

biomass

The Third Cycle of Earth Explorer **Core Missions**

- Call for ideas issued in 2005 •
- 24 proposals evaluated ٠
- 6 Candidate Missions selected in May 2006 for Phase •
- 3 Candidate Missions selected in January 2009 for Phase A ٠
 - **BIOMASS:** BIOMASS Monitoring Mission for Carbon Assessment
 - **PREMIER:** Process Exploration through Measurements of Infrared and millimeter Emitted Radiation
 - CoRe-H20: Cold Regions Hydrology High-resolution Observatory
- Final selection mid 2011 •
- Expected launch 2016

elone Programme

The BIOMASS mission addresses the largest single source of uncertainty in the global carbon budget: the terrestrial ecosystem.

Objective	Product
Greatly improve current estimates of forest carbon stocks	Consistent global maps of forest biomass and height at scale of 100 m
Reduce uncertainty in deforestation emissions to a level comparable to uncertainty in net ocean flux	Map annual reductions in biomass globally
Improve estimates of terrestrial carbon sinks from regrowth and reforestation	Map increases in biomass globally across mission lifetime

- 1. Improve and further validate biomass and height retrieval algorithms
- 2. Flight campaign in regions of high forest biomass density to verify the robustness of the retrieval algorithms
- 3. Define a post-launch protocol for global validation considering different biomes
- 4. Elaborate potential secondary objectives of the first P-band mission in space.
- 5. Further investigate on the use of BIOMASS in carbon models

Retrieval algorithms

Phase 0

- Biomass retrieval using SAR intensities
- Demonstration PolInSAR height retrieval at 30 day interval
- Preliminary works on combined intensity and PolInSAR

Phase A

- Further validation in areas with topography and at tropical forests
- Exploit PolInSAR coherences and tomography

HH, VV, HV

BioSAR Remingstorp forest, Sweden

Thuy Le Toan, K&C 13, Tokyo, January 21 2010

Biomass (ton/ha)

Estimated biomass (t ha-1)

300

200

100

0

Intensity + Pol-InSAR $MSE = 42.28 \text{ tha}^{-1}$ In situ biomass (t ha⁻¹) In situ biomass (t ha⁻¹)

Thuy Le Toan, K&C 13, Tokyo, January 21 2010

SAR Tomography (T-SAR)

Algorithm to characterise forest structure using multi-baseline, polarimetric SAR data

and

miled

Tebaldini, 2009

- States

Tomography from 9 fully polarimetric images (8 baselines)

Ground Layer - HH

Canopy Layer - HH

- **Ground Layer HV**
- HH: backscatter from ground level dominates that from canopy level by about 10 dB
- Similar results in VV
- HV: Contributions from ground level are dominant also
 - Local topography
 - Ground and trunk roughness
 - Ground canopy
 - interactions
 - Underlying vegetation+ branches

Tebaldini & Rocca, 2009

BIOSAR-2: Boreal forests with marked topography

October 2008- Kryclan forest, Northern Sweden- ESAR from DLR

Unsupervised biomass estimates using HV (CESBIO)

Supervised biomass estimates using HV, HH and VV (Chalmers)

Comparison of estimated and measured biomass from data of heading 132°, with data points restriced to rada r incidence angle of 25° -40°. Left: total above ground biomass, middle: crown biomass, right: stem biomass. The coefficients used in the inversion are derived from data of heading s 42°, 133°, 3 13° et 357°

Retrieval of above ground biomass (crown + stem) using Saatchi et al. 2007 algorithm

Use of intensity and interferometric coherence in biomass inversion Thuy Le Toan, Julien Valteau, Alexandre Couhert, Franck Garestier August 2009

Rationale

Ratio of Coherence = linked to biomass through temporal and volume decorrelation ?

Deduced from HV (VH) coherence, and reduced in ratio

Reduced by ratio between polarisations

□ Simulation

Test on data

Simulation of the ratio between coherence HV and coherence VV

Hypothesis: Mean attenuation 1 dB/m Same temporal decorrelation HV and VV

Thuy Le Toan, K&C 13, Tokyo, January 21 2010

1

0,9

Module cohérence 0,0 0,0

0.5

0,4

0

.

•10 m 60 j •30 m 30 j

50 m 30 j

60 m D j

≠70m0j

80 m 60 j

50

100

150 200 Biomas se (t/ha) 250

Testing

P-band Coherence, Remningstorp forest Temporal interval 0 , 30, 60 days Baselines: 10 m, 30 m; 50 m, 70 m, 80 m

Canal VV

Ground data: 10 reference stands of 80 m x 80 m

150 200 Biomasse (t/ha) 250

300

300

30 m 30 j

50 m 30 j

60 m 0 j

≠70 m0 j

80 m60 j

50

100

0.5

0,4

0

InterferometriccoherencemapsModule70 m0 dayPhase

CESBIO

Hhuy blue an, Kolo 1(green) January (200) 10

Ratio of HV coherence / coherence VV vs in situ biomass

Thuy Le Toan, K&C 13, Tokyo, January 21 2010

The Bayesian approach

$$B_{estim} = \int_{B} B \cdot \frac{P(R_{\gamma_{HV}^{0}}) \ P(R_{\gamma_{HH}^{0}}) \ P(R_{\frac{mchv}{mcvv}})}{\gamma_{HV_{theo}}^{0} \ \gamma_{HH_{theo}}^{0} \ \frac{mchv}{mcvv \ theo}} \ d_{B}$$

Where *R* is random variable representing sources of random noise

$$R = \frac{D_{meas}}{D_{theo}}$$

*D*_{meas} is measurement (HV, HH and coherence ratio)

 D_{theo} is theoretical values of D given B

$$D_{theo} = f(B)$$

Bayesian estimation of biomass using γ^{D}_{HV} , γ^{D}_{HH} et mchv / mcvv, RMSE = 28 ton/ha

Bayesian inversion of biomass

HV and coh HV/coh VV

Map of the difference

Flight campaigns

Phase 0

BIOSAR-I : Remningstorp, Sweden, March -May 2007 To test 0, 30, 60 day repeat PolInSAR

BIOSAR-2: Kryclan, Sweden, October 2008 To validate methods on forests with strong topograhy

Phase A

TropiSAR: French Guiana, August 2009

Candidate experiments:

Ground based radar over forest in F. Guiana Flight campaign in Gabon

Traitement 3 : exploitation pour le bois d'oeuvre + exploitation pour le bois d'énergie + éclaircie par dévitalisation

-

313400

313800

314000

60 120 Métres

MARAIS DE KAW - VOL 5 -

VH

HH

The use of biomass measurements in carbon models

Forest biomass: essential in carbon budget calculation and poorly known.

BIOMASS Primary objectives:

- Map forest biomass worldwide.
- → Monitor deforestation.
- → Monitor forest regrowth and afforestation.

Large impact on the calculation of the carbon budget of terrestrial ecosystems

Question: can we also use biomass measurements to improve process based models aimed at calculating forest carbon fluxes?

Biomass density estimates by models

Need to reconsider the models to ingest the actual biomass

Integration of biomass data in the dynamic vegetation model ORCHIDEE

N. Delbart, N. Viovy, P. Ciais, and T. Le Toan , EGU 2009

Simulated biomass: realistic simulations, except for very dry forests (underestimation) or very wet forests (overestimation).

Respect climatic gradients, not local heterogeneity→ model needs improvement

Mission architecture overview

GROUND SEGMENT

SUBJECT Terrestrial carbon stock/carbon fluxes by measurement of forest biomass

Flight Operations Segment 1 TT&C Station (Kiruna), S-Band Flight Operation Control Center (ESOC)

Payload Data Ground Segment 1 Science Data Acquisition Station (Svalbard) Processing and Archiving Element (ESRIN)

Auxiliary Data Land cover maps Digital Elevation Models

USER SEGMENT Carbon cycle modellers/Research Centres BIOMASS Mission Elements

LAUNCHER Soyuz/Vega

SPACE SEGMENT

Single Spacecraft, 1200 - 2600 kg, 800 - 1200W Payload: P-band SAR 5 year lifetime

ORBIT Sun-synchronous, local time 05:00, 640 km, 27 to 39-day repeat cycle

User Consultation Meeting, Lisbon, Portugal, 20-21 January 2009 **DIOMASS**

User Consultation Meeting, Lisbon, Portugal, 20-21 January 2009 biomass

Stowed configurations in launcher fairings

User Consultation Meeting, Lisbon, Portugal, 20-21 January 2009 biomass

Thuy Le Toan, K&C 13, Tokyo, January 21 2010