Global Lake Census

Kevin Telmer and Maycira Costa Jamie MacGregor and Daniel Stapper University of Victoria, Canada

Prototype Areas

Objectives

- Create a single season snapshot of Canada's lakes using PALSAR
- Produce a map of lake size distribution for Canada
- Parameterize carbon fluxes from lakes regionally
- Use JERS-1 from 1990s to detect change

Key parameterization = Slope m

Costa M.P.F. & Telmer K.H. (2007) Mapping and monitoring lakes in the Brazilian Pantanal Wetland using synthetic aperture radar imagery. *Aquatic Conservation-Marine and Freshwater Ecosystems* **17**: 277-288.

Telmer K.H. & Costa M.P.F. (2007) SAR-based estimates of the size distribution of lakes in Brazil and Canada: a tool for investigating carbon in lakes. *Aquatic Conservation-Marine and Freshwater Ecosystems* **17**: 289-304

Truthing using CANVEC Dataset

Being Used as independent data source for comparison to PALSAR Lake Classification

DESCRIPTION: http://www.geogratis.ca/geogratis/en/collection/detail.do?id=28954

- New and free cartographic reference product by Natural Resources Canada
- Contains thematic information grouped into 11 themes including hydrographic data.
- Data originates from the best available sources: mainly from the National Topographic Data Base, Geobase initiative, and Landsat 7 imagery.
- Spatial accuracy ranges 15 to 30 meters for most areas.
- Source data ranges from 1960's to 2007. Not always well known.
 ISSUES
- Coverage is not complete and connectivity is problematic
 - can't yet be used seamlessly for continental scale investigations
- Coverage is for Canada only
- Temporal analysis (change detection) is complicated age range of data is more than 40 years

CanVec lake vectors

PALSAR lake classification

Comparison in Pilot Areas CanVec vs PALSAR

Results of Comparison

• Lake Area:

- Average 2.5% difference in lake area
- PALSAR consistently under-estimates lake area across all size classes except 10,000 – 100,000 Ha.
- Lake Numbers:
 - good agreement between the two datasets except for the smallest size class.
 - CanVec has better spatial resolution and sees very small lakes which PALSAR cannot.
 - Impacts regions some regions strongly such as the NWT where there are high densities of small lakes.
- Main problems identified: mainly due to spatial resolution
 - Edge effects area lost as a function of blended pixel
 - One Lake with narrow channels in CanVec may appear as 4 lakes to PALSAR because narrow regions are lost.
 - This can shift lakes into different size classes making across lake class examinations more difficult.

Monitoring Artisanal Gold Mining (ASM)

Kevin Telmer and Daniel Stapper University of Victoria, Canada

Repeat-Pass InSAR for detecting and monitoring Artisanal Gold Mining (ASM)

Kevin Telmer & Daniel Stapper University of Victoria

- ASM (artisanal mining) has become the largest direct-use source of mercury to the environment
- Concentrated in areas of heavy cloud in the tropics
- PALSAR high res. and polarimetric products, from separate passes, are used to monitor past and active ASM
 - 2 FBS PALSAR scenes, from June and November of 2006, have been used to identify changes in the landscape caused by ASM.

© Aqueous Geochemistry and Remote Sensing Laboratory, University of Victoria

