

### **ENERGY & WASTE**



Oxygen

### CH4 Modeling Natural Wetlands



Figure 2. DNDC-modeled vs. observed CH4 fluxes from a pristine wetland in Marcell, MN (field data from Crill et al. 1988, Dise 1991, Clement et al. 1995, and Shurpali et al. 1993).

# Rice studies in southeast China

- Case study 1: rice mapping in Fuyang City, Zhejiang Province (a city in China is an administrative level higher than county, which means that a city usually covers several counties)
- Case study 2: rice modeling and bio-estimating in Haining County, Zhejiang Province (in-process)



#### • Case study 1: rice mapping

- PALSAR images acquired in 2006

(HH polarization, pixel size - 6.5m)



- Study area (Fuyang City administrative area)

-Covering  $1.8 \times 105$  hectares;

-a typical subtropical climate. Nearly half a year is rainy and cloudy;

-major LULC:

mountains (~70%), lowland plains (~20%), and water (~10%);

-Rice:

- -- dominant crop in lowland plains (~50% of lowland plain);
- -- single cropping
- -- small fields

-- highly fragmented with urban developments, dryland crops and shrub orchards (tea, mulberry, etc)

- Image classification: Support vector machine (SVM)





|                     |              | Reference data |       |       |        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | Cand                    |
|---------------------|--------------|----------------|-------|-------|--------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------|
|                     |              | w              | R     | 0     | D      | U     | Classified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | User's      | Cond.<br>Kappa          |
|                     | YV           |                |       |       |        |       | totals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | accuracy(%) |                         |
| Classified data     | W            | 161            | 21    | 8     | 5      | 5     | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 80.50       | 0.7529                  |
|                     | R            | 9              | 180   | 9     | 0      | 2     | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 90.00       | 0.8689                  |
|                     | 0            | 34             | 16    | 130   | 8      | 12    | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 65.00       | 0.5788                  |
|                     | D            | 4              | 19    | 21    | 137    | 19    | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 68.50       | 0.6285                  |
|                     | U            | 3              | 1     | 1     | 2      | 193   | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 96.50       | 0.9545                  |
|                     | Reference    | 211            | 237   | 169   | 152    | 231   | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                         |
|                     | totals       |                |       |       |        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                         |
|                     | Producer's   | 76 20          | 75 05 | ግፍ ሰሳ | 00 12  | 07 55 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                         |
| NAME AND ADDRESS OF | accuracy (%) | 70.30          | (2.23 | 10.92 | YU. IS | رر.ده | ne water water and the second s |             | ventormolecular average |

Error matrix of the PALSAR-derived class map:

W - Water; R - Rice; O - Orchard; D - Dryland crop; U - Urban.

Overall Classification Accuracy = 80.10%; Overall Kappa Statistics = 0.75.

#### - Backscatter characteristics



-rice turned to be confused with dryland crop and orchard in each image.

Temporal Changes in L-band Sigma 0



Source: Inoue et al. 2002

- Phenological variation of vegetation backscatter



-rice backscatter increased along the three growing stages. The backscatter of dryland crop and orchard did not change much.



- Study area (Haining County)

- PALSAR FBD images: (HH&HV): -June 28, 2007 (transplanting) -August 13, 2007 (tillering) -September 28, 2007 (heading)

Field measurements (totally 44 fields):
June 29, 2007 (4 fields)
August 15, 2007 (19 fields)
September 30, 2007 (21 fields)

- Measured biophysical parameters:
  - plant height; plant density
  - unit dry weight, unit wet weight (leaf moisture)
  - leaf area index (LAI), leaf orientation angles
  - Water depth

- Rice canopy scattering model

-a 2nd-order radiative transfer function (RTF) model (based on Karam et al. 1995; Wang and Qi, in press)

-Rice was simulated as two-layer (leaves and short stems) continuous vegetation.

-Soil ground was thus simulated as a smooth continuous surface with dielectric constant of water.



(scattering intensity in each component is attenuated by scatterers on top of it.)

- Next steps: biophysical quantification

- Leaf density and plant height are the two major variables that control rice backscatter;

$$\sigma_{\text{mod}el}^0 = f(\text{leaf } \_\text{density, plant } \_\text{height})$$

- These two variables could be retrieved via model inversion with the criteria:

$$\min(\sigma_{\text{mod}\,el}^0 - \sigma_{\text{PALSAR}}^0)^2$$

- They were finally applied to all rice fields in the image to estimate field-based green biomass and rice yields in the study area.

## Java Example



**Figure 5** – Rice agriculture dynamics in Java from multiple PALSAR images collected on 6 Dec 2006 and 21 Jan 2007. Green indicates fields planted, and pink indicates fields harvested during the interval between acquisitions. The image is ~5 km across and has a spatial resolution of 6-m.