K&C Irrigated Rice Products:

Understanding the influence of rice paddies on atmospheric CH₄

Bill Salas
Applied Geosolutions, LLC

K&C Initiative, 7th Science Advisory Panel Meeting, January 2007

"Assessing the influence of Asian rice paddies on the growth rate of atmospheric methane 1980-2020"

Biogeochemical
modeling - improving
DNDC model for
diverse Asian rice
conditions

Asian rice methane flux

GIS Database
Development spatial data (climate, soil, etc.) used as
input to DNDC

Remote Sensing Analysis - mapping rice location, phenology, and water management using RS (MODIS, PALSAR) data

The DNDC Model

DNDC: Modeling CH4 emissions from rice paddy

Annual CH₄ Fluxes (Tg CO₂Eq)

Annual CH4 fluxes (Tg CO2 equivalent) from rice paddies of China in 2000-2020

Annual N₂O Fluxes (Tg CO₂Eq)

Annual N2O fluxes (Tg CO2 equivalent) from rice paddies of China in 2000-2020

Annual Net GWP (Tg CO₂Eq)

Role of Agricultural Management Observatory

- While statistical data on agricultural management exist, they are not sufficient for geospatial decision support systems.
- Critical need for spatially explicit information on
 - >crop type,
 - >crop phenology,
 - >tillage practices,
 - residue management, etc.

MODIS DATA PROCESSING

Green-sensitive vegetation indices:

NDVI

$$NDVI = \frac{\rho_{nir} - \rho_{red}}{\rho_{nir} + \rho_{red}}$$

EVI

$$EVI = 2.5* \frac{\rho_{nir} - \rho_{red}}{\rho_{nir} + 6* \rho_{red} - 7.5* \rho_{blue} + 1}$$

Water-sensitive vegetation index:

$$LSWI = \frac{\rho_{nir} - \rho_{swir}}{\rho_{nir} + \rho_{swir}}$$

MAPPING RICE – THE LOGIC

MODIS-derived paddy rice area, Southeast Asia, 2002

Need for SAR...Issues with MODIS

- Cloudy, even through we are using 8-day composites, difficulty with persistent clouds
- Resolution: 500m SWIR band.
- Water management: mid-season drainage and shallow flooding

Mapping Cropping Systems in India Example

JERS-1 composite – Vijayawada area

Both blue and green shades represent rice paddies BLUE = rabi crop GREEN = kharif crop

JERS SAR Rice Mapping: India Example

K&C Irrigated Rice Products

- Data: PALSAR ScanSAR time series
- "Routine":
 - ➤ *Paddy Extent*. Coverage to include all of Asia (China, India, SE Asia) which includes 90% of total rice area globally.
 - > Crop cycles/phenology. Map single-, double-, triple-rice and rice/upland double cropping.
 - > Flood Duration. Period of inundation
- "Research":
 - ➤ Biomass/LAI development. Track biomass/LAI development.
 - ➤ *Mid-season drainage*. Quantify the presence of mid-season drainage.

Temporal Changes in L-band Sigma 0

Source of Funding?

Ecology and Risk Factors of Highly Pathogenic Avian Influenza in Asia

--- Cropland, Poultry and Wild Waterfowls

Xiangming Xiao http://remotesensing.unh.edu

Institute for the Study of Earth, Oceans and Space University of New Hampshire Durham, NH 03824, USA

Global distribution of H5N1 outbreaks

Ecology and Risk Factors of Avian Influenza Virus

Interaction of wild waterfowls and domestic poultry in complex and dynamic waterbody (e.g., lakes, fish ponds) – wetland – cropland landscapes

Do wild waterfowls use croplands as part of their wintering sites?

Rice in dry season

Free-range ducks

A comparison of spatial patterns among HPAI outbreaks, free-range ducks, and MODIS-derived cropping intensity

Earth observations, ecology and risk factors of HPAI

Framework of observations, analysis and modeling

PALSAR Demonstration Site: Poyang Lake, China Integrated surveillance, monitoring and analysis

