

Advanced Optical Satellite (ALOS-3) Update

Takeo Tadono¹, Hidenori Watarai¹, Ayano Oka¹, Yousei Mizukami¹, Junichi Takaku², Fumi Ohgushi², and Masanori Doutsu² ¹ JAXA, ² RESTEC E-mail: tadono.takeo@jaxa.jp

Japan Aerospace Deploration Agency

ALOS F/O Missions

- Continuous observations successor "Daichi" (ALOS) from 2006 to 2011
- Contribute to ensure the <u>safety and security of citizens</u>, *i.e.* disasters monitoring and management, land deformation monitoring, national developing management, foods and natural resources, environmental issues in global etc. as common issues.
- Contribute to industrial development based on Earth observation data *i.e.* <u>National Spatial</u>
 <u>Data infrastructure (NSDI) and new applications.</u>

ALOS-3 Overview

Items		Specifications	Phase C		
Orbit	Туре	Sun-synchronous sub-recurrent			
	Altitude	669 km at the equator			
	Local Sun Time	10:30 am +/- 15 minutes at the descending node			
	Revisit	35 days (Sub-cycle 3 days)			
Instruments		 Wide-swath and high-resolution optical imager (WISH, as a tentative) Dual-frequencies Infrared sensor (hosted payload) 			
Ground Sampling Distance (GSD)		 Panchromatic band of WISH (Pa): 0.8 m Multispectral band of WISH (Mu): 3.2 m (6 bands) 			
Quantization		11 bit / pixel	Wide-swath and high-resolution		
Swath width		70 km at nadir	optical imager (wish)		
Mission data rate		Approx. 4 Gbps (after onboard data compression: 1/4 (Pa) and 1/3 (Mu))	In-orbit configuration		
Mission data downlink		- Direct Transmission: Ka and X-band - <i>via.</i> the Optical Data Relay Satellite			
Mass		Approx. 3 tons at launch			
Size		$5 \text{ m} \times 16 \text{ m} \times 3.5 \text{ m}$ on orbit			
Duty		10 mins / recurrent			
Design life time		Over 7 years			

Observation channel band allocations among optical satellites (visible to near-infrared).

Observation Modes

1	Strip-map observation	The satellite can normally perform observation covering 70 km in width and 4,000 km in along-track direction as the strip-map observation mode. To increase the acquisition frequency, the images will be taken by less than 25 deg. pointing angle in cross-track direction (GSD < 1m) when the satellite track is in oceans.
2	Stereoscopic observation	Two ways proposes to acquire stereo-pair image: 1) in single orbit path, and 2) combining two strip-map observations by nadir view and backward view in neighboring path after three days (sub-cycle revisit orbit). The way 1) will be however not sufficient base-to-height ratio (B/H) to derive terrain information. As the advantages of the way 2), that is possible to set suitable B/H, and can acquire images over large area. However, this will depend on weather conditions i.e. cloud covers, to success stereo image acquisition within short period as a disadvantage.
3	Point observation	If the user has a certain ground point or an area of interest (AOI), the satellite can observe there using pointing capability within 60 deg. This mode will be used for natural disaster monitoring, for example.
4	Observation direction changing	The satellite can observe any given point by the pointing capability up to 60 deg. in all direction against the satellite nadir. In the case of Japan, it can be activated within 24 hours after receiving the request. This will be used when the large natural disaster happens e.g. the expecting Nankai Trough large earthquake.
5	Wide-area observation	This mode can cover in wide-ranging area of 200 km (in along-track direction) x 100 km (in cross-track direction) by satellite's single orbital passage. This will be also used when the large natural disaster happens.

1 and 2 will be used in the basic observation.

Strip-Map Observation Mode

Example of nadir observation 70 km x 4000 km (10 mins/path). The satellite can normally perform observation covering 70 km in width and 4,000 km in along-track direction as the strip-map observation mode. To increase the acquisition frequency, the images will be taken by less than 25 deg. pointing angle in cross-track direction (GSD < 1m) when the satellite track is in oceans.

Stereoscopic Observation Mode

Day N+3 Day N

Combined two strip-map in neighboring paths after three days.

Single-path stereo.

Two ways proposes to acquire stereo-pair image: 1) in single orbit path, and 2) combining two strip-map observations by nadir view and backward view in neighboring path after three days (sub-cycle revisit orbit). The way 1) will be however not sufficient base-to-height ratio (B/H) to derive terrain information. As the advantages of the way 2), that is possible to set suitable B/H, and can acquire images over large area. However, this will depend on weather conditions i.e. cloud covers, to success stereo image acquisition within short period as a disadvantage.

Point Observation Mode

Example of point observation by pointing function.

If the user has a certain ground point or an area of interest (AOI), the satellite can observe there using pointing capability within 60 deg. This mode will be used for natural disaster monitoring, for example.

Example of coverage by +/- 60 deg. pointing function.

Observation Direction Changing Mode

XA

The satellite can observe any given point by the pointing capability up to 60 deg. in all direction against the satellite nadir. In the case of Japan, it can be activated within 24 hours after receiving the request. This will be used when the large natural disaster happens e.g. expecting the Nankai-Trough large earthquake.

Wide-Area Observation Mode

Example of three scans observation covered >200 x 100 km.

This mode can cover in wide-ranging area of 200 km (in along-track direction) x 100 km (in cross-track direction) by satellite's single orbital passage. This will be also used when the large natural disaster happens.

Simulated Image Generation

■ The simulated images are generated as a part of pre-launch study to consider image utilizations by users in operational phase.

- ✓ The latest or required specifications are reflected to them as much as possible, however it is impossible to create "complete" simulated image.
- \checkmark Such limitations and conditions are clarified to use them.
- Input data: two types of airborne images
 - ✓ ADS 80, Leica Geosystems AG: Three-line scanner, 20-30 cm GSD
 - Pointing simulation
 - Strip-map and Direction Changing modes simulation
 - Not enough GSD

Area	Obs. date	Band	Original GSD	
Tsukuba, Japan	2013/04/22	Pa/R, G, B, NIR	30 cm	
Tokyo, Japan	2013/03/16	Pa/R, G, B, NIR	20 cm	

- ✓ DMC II, Z/I Imaging Corp.: 8 cm GSD, only nadir image
 - Utilization of disaster monitoring and interpretation
 - GSD in Strip-map simulation
 - Use images captured actual natural disasters:
 » Landslide in Hiroshima, Japan; Flooding in Ibaraki, Japan

Simulated Image Generation

List of Simulated Images by DMC II

Landslide sites, Hiroshima Pref., Japan: Aug. 27-28, 2014

	No	Contents	Roll	Pitch	Yaw	Band	File name
Strip-map	1	Nadir, site A	0.0°	0.0°	0.0°	Pa+RGB	HiroshimaA_Stripmap_000_000_PanSharpen.jpg
	2	Nadir, site B	0.0°	0.0°	0.0°	Pa+RGB	HiroshimaB_Stripmap_000_000_PanSharpen.jpg

Flooding sites, Kinu River, Joso, Ibaraki Pref., Japan: Sep. 11, 2015

	No	Contents	Roll	Pitch	Yaw	Band	File name
Strip-map	1	Nadir, site A	0.0°	0.0°	0.0°	Pa+RGB	KinugawaA_Stripmap_000_000_PanSharpen.jpg
	2	Nadir, site B	0.0°	0.0°	0.0°	Pa+RGB	KinugawaB_Stripmap_000_000_PanSharpen.jpg

ALOS-3 Simulated Image Generation

(a) Landslide sites, Hiroshima Pref., Japan on Aug. 27-28, 2014

(b) Flooding sites, Kinu River, Joso, Ibaraki Pref., Japan on Sep. 11, 2015 The radiometric and GSD simulated images. Left: Simulated image using DMC II: right: ALOS pan-sharpen

Simulated Image Generation

Processing flowchart of DSM generation using simulated ALOS-3 image from WorldView-2 stereo pair.

ALOS-3 DSM Processing Simulation

WV-2 acquired different date and different angle: Stereo angle=26.7 (B/H=0.5)

ALOS-3 stereo simulated images on Dec 20, 2015 (left) and Jan. 5, 2016 (right).

height

0.8 m-mesh DSM using ALOS-3 simulated image.