L-band ground based radar data analysis from trees

JAXA/EORC Manabu Watanabe

Tree moisture variation affect the L-band SAR signal from a forest

R. Lucas, et al., An Evaluation of the ALOS PALSAR L-Band Backscatter—Above Ground Biomass Relationship Queensland, Australia: Impacts of Surface Moisture Condition and Vegetation Structure, TGARSS, 3(4), pp576-593, 2010

K. C. McDonald, et al., Diurnal and Spatial Variation of Xylem Dielectric Constant in Norway Spruce (*Picea abies* [L.] Karst.) as Related to Microclimate, Xylem Sap Flow, and Xylem Chemistry, IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 40(9), 2063-2082, 2002

M. Watanabe, et al., Multi-temporal Fluctuations in L-band Backscatter from a Japanese Forest, 53(11), 5799-5813, 2012

Tree moisture variation affect the L-band phase shift from a forest

Sensor : PALSAR-2 Obs. date: 1) 2015年5/10-3/1 2) 2015年5/21-5/07

Obs. pair 1 Longer path (3cm, 90°) in coniferous forest on March 1, 2015.

Google earth

M. Watanabe. et al.. Phase shift observed over a forest stand with PALSAR-2 SAR interferometry in Hakone. JpGU. submitting

Deploy antennas at 16 m height

<image>

Place: Tsukuba space centerGB radar experiment: Jan. 26 to 27, 2016

Every 15 minutes

GB Lidar experiment : Jan. 27, 2016

Tree moisture measurement

(Jan. 20 17:00 – Jan. 27 13:00) Weak (about 1%) daily variation

About field experiment

Simple full pol. calibration with a trihedral CR $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

$$\begin{bmatrix} M_{HH} & M_{HV} \\ M_{VH} & M_{VV} \end{bmatrix} = \begin{bmatrix} 1 & \delta \\ \delta & f \end{bmatrix} \begin{bmatrix} S_{HH} & S_{HV} \\ S_{VH} & S_{VV} \end{bmatrix} \begin{bmatrix} 1 & \delta \\ \delta & f \end{bmatrix}$$

Observed
$$\begin{array}{c} \text{Cal. Coeff.} \\ \text{(Rx antenna)} \end{array} \quad \text{Target} \quad \begin{array}{c} \text{Cal. Coeff.} \\ \text{(Tx antenna)} \end{array}$$

Range profile <u>betore the cal.</u> (Linear basis)

Signal from Tri. CR in HV pol. <u>Cross talk : – 14dB</u>

Range profile <u>after the cal.</u> (Linear basis)

Decrease signal from tri. CR in HV pol. Cross talk : $-14dB \rightarrow -32 dB$

Range profile <u>betore the cal.</u> (Pauli basis)

Signal from Tri. CR : HV and double bounce

Range profile <u>after the cal.</u> (Pauli basis)

Signal from Tri. CR : Single bounce

Range profile <u>betore the cal.</u> (Eigen value decomposition)

Signal from Tri. CR : <u>α≈90° (double bounce)</u>

Range profile <u>after the cal.</u> (Eigen value decomposition)

Signal from Tri. CR : <u>Entropy ≈ 0 </u>, <u> $\alpha \approx 0^{\circ}$ </u>

Radar reflection from a CR behind a tree.

	CR	CR behind a tree
Optical	0	<u>×</u>
σ^{0}_{HH}	0	<u>O</u>
Entropy	≈0	≈0
α	≈0	<u>≈50°</u>

4 pol. Calibration

S. H. Yueh, and J. A. Kong, Journal of electromagnetic waves and applications, vol.4, no 1, 27-48, 1990

Next experiment

Place	: Tsukuba space center
GB radar obs.	: March 18 – 19, 2016
Pi-SAR-L2 obs.	: March 19, 2016
UAV obs.	: March 19, 2016

Test site @ Tsukuba space center

Summary

1. Simple 4-pol. calibration for the ground based radar

Cross talk $:-14dB \rightarrow -32 dB$ Channel imbalance $:\sim 1$

2. Radar reflection from a CR behind a tree

	CR	<u>CR behind a tree</u>
Optical	0	<u>×</u>
σ^{0}_{HH}	0	<u>O</u>
Entropy	≈0	≈0
α	≈0	<u>≈50°</u>

3. Radar reflection from a tree

Weak volume (σ^0_{HV}) and double bounce (σ^0_{HH-VV}) scattering observed.

Future

- 4-pol. calibration for the ground based radar with 3 types of CRs.
- GB radar obs. with Pi-SAR-L2 and UAV (End of March)