Calval and path processing

M. Shimada TDU, JAXA

KC#22 at RESTEC Tokyo

path processing

strip prf change Coverage -> shortage

> minor agc correction -> improvement of the caibration chirp update ud azimuth pc

scansar prf change chirp update ud azimuth phase coding Dual receivers -> Azimuth Ambiguity

Calibration Validation

slope correction same ortho rectification same

DEM same: 30m/90m, AI by Paul or Kyle

ps: 4 times slower

ALOS-2 Schedule and status

ALOS-2 is in good condition and the everything is on-going.

2014

 \geq

2015

- > May 24-26 launched and PALSAR-2 antenna deployed.
- June 19-21 PALSAR-2 first images were acquired.
- Aug. 4 Initial Calibration started
- > Aug. 20 Move to the operational observation phase.
 - Nov. 25 starts the product distribution

Ongoing global observation and the emergency observation

Routine Cal.

ALOS-2 satellite

ALOS-2 in-orbit configuration

Specification

Experimental Compact InfraRed Camera (CIRC) SPace based Automatic Identification System Experiment(SPAISE2)

Four new techniques

- High power and efficiency device
 - GaN HEMT, the first flight for satellite in the world, for lower NESZ (37.1 W/TRM)
- Dual receive antenna system
 - wider swath with lower PRF
 - Five electric panels are in full aperture for transmission and are divided for receiving

• Chirp modulation (+Azimuth Phase Coding(APC))

- Up/Down and Phase modulation for higher SA
- New data compression
 - updated BAQ algorithm

5

ALOS-2 Mission Objectives

- Disaster Monitoring (including the solid earth research-Polarimetry application)
- Environmental monitoring for Biosphere, Geosphere, Cryosphere, and Hydrosphere
- Natural Resources (Agriculture, Ocean monitoring, and Resources)
- Technology Development for the Future Earth Remote sensing (satellite and sensor)

2. Technical overview of PALSAR-2

Shimada 2015 APSAR

Imaging and calibration Strategy (i.e., Range Doppler)

PALSAR-2 Calibration

- Initial cal: Aug. 4 2014-Nov. 20, 2014
- Routine Cal: Nov. 25, 2014 –
- Raw data evaluation
- Processor tuning (Dual Receiver)
- Antenna Pattern Evaluation
- Polarimetric Calibration
- Image Quality
- Calibration, Validation and science Team (CVST) activity. Acknowledgement of the PIs' contributions on analysis and CR deployments.

4.2.4 Long term variation of the raw data

Global	Ave	Average(std dev.)							
mode	I/Q	depth [deg]	SNR [dB]	Sat [%]	Scene				
3m	1.0022 (0.0065)	1.5491 (0.0012)	13.2852 (1.9119)	0.205	21				
6m	1.0002 (0.0052)	1.5557 (0.0071)	13.7788 (3.2357)	0.295	29				
10m	1.0009 (0.0068)	1.5445 (0.0075)	12.6178 (2.7583)	0.526	26				
ScanSAR [350km]	1.0003 (0.0006)	1.5458 (0.0030)	9.3965 (6.7832)	0.012	2				
ScanSAR [490km]	1.0029 (0.0021)	1.5446 (0.0005)	13.0030 (3.4342)	5.551	3				

(Ref) PALSAR

mode	I/Q	dPH	SNR	Sat
FBS	1.007	1.598	8.423	LS 5%
FBD	1.010	1.579	3.358	LS 5%
PLR	1.001	1.577	8.712	LS 5%
WB1	1.015	1.581	7.926	LS 5%
a 2 0/162 APSA	R1.008	1.597	8.733	LS 5%10

Ambiguity suppression and Wider Swath Provision

1) Dual receivers (DR) allowing wider swath with lower PRF

2) Alternative Up/Down chirp and random phase shift suppressing <u>range ambiguity</u>:

were adopted.

Phase tuning of the dual receivers are necessary

DR reconstruction algorithm

Signals can be reconstructed by solving the above equations.

$$Y_{1}(f) = \begin{cases} \frac{e^{\frac{j\pi\Delta x_{1}^{2}+j\pi\Delta x_{1}f}{\nu}}{(1-e^{\frac{j\pi\Delta x_{2}^{2}-\Delta x_{1}}{\nu}})} & -PRF < f < 0\\ 1-e^{\frac{j\pi PRF(\Delta x_{2}-\Delta x_{1})}{\nu}}{(1-e^{\frac{j\pi\Delta x_{2}^{2}+j\pi\Delta x_{1}f}{\nu}}{(1-e^{\frac{j\pi\Delta x_{2}^{2}+j\pi\Delta x_{2}f}{\nu})}} & 0 < f < PRF \end{cases}$$

$$Y_{2}(f) = \begin{cases} \frac{e^{\frac{j\pi\Delta x_{2}^{2}+j\pi\Delta x_{2}f}{\nu}}{(1-e^{\frac{j\pi\Delta x_{2}^{2}+j\pi\Delta x_{2}f}{\nu}}{\nu})}} & 0 < f < PRF \\ \frac{e^{\frac{j\pi\Delta x_{2}^{2}+j\pi\Delta x_{2}f}{\nu}}{(1-e^{\frac{j\pi PRF(\Delta x_{1}-\Delta x_{2})}{\nu}})} & 0 < f < PRF \end{cases}$$

Brown, "Multi-Channel Sampling of Low-Pass Signals," IEEE Trans on Circuits and Systems, Vol. CAS-28, No.2 Feb. 1981 Krieger et al, "Unambiguous SAR Signal Reconstruction From Norunifers Displaced Phase Center Sampling, " IEEE GRS Letters, Vol. 1, No. 4, Oct. 2004

Correction 2 Input data: Observation data + Chirp Data

Method : find the best angle (delta) to minimize the ambiguity

HH pol of HBD at Hokkaido

Find the minimum values for HH and HM (individually)

Correction 2(other modes, UB, HBQ, ScanSAR)

They show almost the same values depending on the polarizations.

UB HH image

2014/6/19

伊豆大島

15

Before (HBQ)

After(HBQ)

Range ambiguities in PALSAR images

	no	HH updown	0-pai	mode	n re	no HV	updown	0-pai	moden	repID
	0	1	0	1	0	0	1	0	1	0
	1	1	0	1	0	1	1	0	1	0
	2	0	0	0	0	2	0	0	0	0
	3	0	0	0	0	3	0	0	0	0
	4	1	0	1	0	4	1	0	1	0
	5	1	0	1	0	5	1	0	1	0
	6	0	0	0	0	6	0	0	0	0
	7	0	0	0	0	7	0	0	0	0
	8	1	0	1	0	8	1	0	1	0
	9	1	0	1	0	9	1	0	1	0
	10	0	0	0	0	10	0	0	0	0
	11	0	0	0	0	11	0	0	0	0
	12	1	0	1	0	12	1	0	1	0
	13	1	0	1	0	13	1	0	1	0
	14	0	0	0	0	14	0	0	0	0
	15	0	0	0	0	15	0	0	0	0
	16	1	1	3	0	16	1	1	3	0
	17	1	1	3	0	17	1	1	3	0
	18	0	0	0	0	18	0	0	0	0
Tin	19	0	0	0	0	19	0	0	0	0
ดี	20	1	1	3	Shim	a 20 15 APSAI	R	1	3	0 18

One example of the UD-chirp and the azimuth phase codings (UBD)

Differences between PALSAR/PALSAR-2

	PALSAR	PALSAR-2
Orbits and width/orbit over equator	671 59.6 km	207 64.4 km
Image width	70km	70km
Gain	MGC	AGC
Incidence angle range	~5 degrees (33~38 degrees)	~14degrees (28.5~33.9,33.7~ 38.5,38.3~42.5 degrees)
Overlap	large	small

Sea ice retreat around Antarctic Peninsula/Wilkins Sound

Some concern on the accuracy at the overlapping area (espetially on the equator)

ポイントターゲット評価結果 (2016.02.01版SIGMA-SAR)

1-1. 校正係数グラフ(2015.09.17版, UBS)

Calibration factor(UBS)

1-2. 校正係数グラフ(2016.02.01版, UBS)

Calibration factor (UBS, 2016.02.01版)

1-3. 校正係数 統計値(UBS)

(2015.09.	.17版】			【2016.02.01版】					
モード	ポイント数	平均値[dB]	標準偏差	モード	ポイント数	平均値[dB]	標準偏差		
UBS_291	31	-82.72	0.64	UBS_291	31	-83.18	0.51		
UBS_324	17	-82.29	0.88	UBS_324	17	-82.76	0.81		
UBS_354	14	-82.22	0.52	UBS_354	14	-82.53	0.43		
UBS_382	23	-81.72	0.90	UBS_382	24	-82.13	0.62		
UBS_406	2	-81.49	0.06	UBS_406	2	-81.42	0.09		
UBS_427	2	-81.61	0.19	UBS_427	2	-82.00	0.32		
UBS_447	2	-81.18	0.74	UBS_447	2	-81.54	0.63		
UBS_464	1	-81.97	-	UBS_464	1	-82.22	-		
UBS_480	1	-81.95	-	UBS_480	1	-82.30	-		
UBS	93	-82.22	0.84	UBS	94	-82.62	0.75		

2-1. 校正係数グラフ(2015.09.17版, HBQ)

Calibration factor(HBQ)

2-2. 校正係数グラフ(2016.02.01版, HBQ)

Calibration factor (HBQ, 2016.02.01版)

2-3. 校正係数 統計値(HBQ)

[2015.09.	17版】			【2016.02.01版】					
モード	ポイント数	平均値[dB]	標準偏差	モード	ポイント数	平均値[dB]	標準偏差		
HBQ_250	7	-84.81	0.56	HBQ_250	7	-83.19	0.70		
HBS_280	11	-84.89	0.69	HBS_280	11	-83.37	0.77		
HBQ_304	5	-85.12	0.67	HBQ_304	5	-83.48	0.59		
HBQ_327	5	-83.41	1.12	HBQ_327	4	-83.04	0.44		
HBQ_349	14	-83.18	0.41	HBQ_349	14	-83.39	0.41		
HBQ	42	-84.16	1.05	HBQ	41	-83.33	0.59		

3-1. 校正係数グラフ(2015.09.17版, FBD)

3-2. 校正係数グラフ(2015.02.01版, FBD)

Calibration factor (FBD, 2016.02.01版)

3-3. 校正係数 統計值(HBQ, FBD)

[2015.09.	17版】			【2016.02.01版】					
モード	ポイント数	平均値[dB]	標準偏差		モード	ポイント数	平均値[dB]	標準偏差	
FBD_282	66	-82.55	0.61		FBD_282	66	-82.76	0.54	
FBD_325	67	-82.08	0.60		FBD_325	67	-82.13	0.55	
FBD_362	24	-82.54	0.58		FBD_362	24	-82.79	0.58	
FBD	157	-82.35	0.64		FBD	157	-82.50	0.63	

4-1. ポイントターゲット評価結果グラフ(2015.02.01版, UBS)

4-2. ポイントターゲット評価結果グラフ(2016.02.01版, HBQ(1/2))

Processd by 20160205

4-3. ポイントターゲット評価結果グラフ(2016.02.01版, HBQ(2/2))

4-4. ポイントターゲット評価結果グラフ(2016.02.01版, FBD)

5. 各評価項目の統計値(1/2)

評価項目	モード	モード ポイント数		SIGMASAR (2015.09.17版)		1A-SAR 02.01版)	要求精度の 仕様値
			平均值	標準偏差	平均值	標準偏差	
PSLR(range) [dB]	-	396(397)	-14.256	2.784	-14.305	2.999	-13.26dB+2dB
PSLR(azimuth) [dB]	-	396(397)	-15.263	3.942	-15.478	4.183	-13.26dB+2dB
ISLR [dB]	-	396(397)	-8.415	2.404	-8.477	2.486	-10.16dB+2dB
	SBS	-	-	-	-	-	
	UBS	93(94)	-82.22	0.84	-82.62	0.75	
Сг [ив]	HBQ	42(41)	-84.16	1.05	-83.33	0.59	
	FBD	157(157)	-82.35	0.64	-82.50	0.63	
dx_grd [m]	-	396(397)	-2.882	4.763	-2.760	4.513	20m
dy [m]	-	396(397)	-0.503	1.094	-0.100	1.133	20m
	SBS	-	-	-	-	-	1.78
Resolution [m]	UBS	106(107)	1.955	0.061	1.954	0.060	1.78
(range)	HBQ	79(79)	3.398	0.139	3.397	0.133	3.57
	FBD	211(211)	4.941	0.101	4.904	0.492	5.36
	SBS	-	-	-	-	-	1.00x1.1(1.10)
Resolution [m]	UBS	106(107)	3.924	0.135	3.928	0.137	2.75x1.1(3.025)
(azimuth)	HBQ	79(79)	3.853	0.356	3.847	0.353	3.75x1.1(4.125)
	FBD	211(211)	4.991	0.123	5.014	0.141	5.00x1.1(5.500)

5. 各評価項目の統計値(2/2)

評価項目	ポイント数	SIGMA-SAR (2015.09.17版)		SIGN (2016.	1A-SAR 02.01版)	要求精度の 仕様値
		平均值	標準偏差	平均值	標準偏差	
Gain balance VV/HH	20(20)	0.993	0.027	0.990	0.028	1.047
Phase balance VV/HH	20(20)	0.278	1.163	0.463	1.277	5 [deg]
Cross talk HV/HH	20(20)	-44.195	5.725	-42.462	4.226	-30 [dB]
Cross talk VH/VV	20(20)	-40.940	5.383	-40.983	5.456	-30 [dB
Cross talk	20(20)	-43.032	8.202	-42.851	7.008	-30 [dB]

※ ()内の数字は206.02.01版評価におけるポイント数

Sigma-SAR

- SAR imaging from the L1.0 data
- Updated from the original version, often
- Calibration and imaging, ortho rectification, slope correction
- JAXA-Shimada agreement for copy right.
- Commertical use can be available (after the contract), after April 2016

RFI monitoring by JERS-1 SAR (1992-1998)

BW=15MHz HH

RFI monitoring by PALSAR (2010/4~2011/4)

Normalized zero padded bandwidth (%)

RFI monitoring by PALSAR (2010/4-2011/4)

BW=14MHz HV

RFI monitoring by PALSAR2 (2014/8~2014/12)

FBD is used. Japan is not observed by FB

Path processing

- Time consuming
- 4 times slower than PALSAR products
- Ortho is OK
- Slope correction is OK
- The product seems stable

RFI summary

- RFI increases temporally.
- Comparing RFIs of PALSAR and PALSAR-2, RFI (2014) became at double of 2010 (while those regions near Japan and neighbors, Saharan area, middle east with highest RFI were not measured yet)
- RFI depends on the polarizations, and HV is more sacrificed than HH.

Conclusions

- Calibration of the KC product is on-going.
- ALOS-2 PALSAR mosaic has be generated.
- Ionospheric sincillation is the issue.