Calibration and Validation of PALSAR (Version 5)

M. Shimada, T. Tadono, M. Watanabe, and Ake Rosenqvist

Earth Observation Research Center, National Space Development Agency of Japan, Harumi 1-8-10, Harumi island triton square office tower X 22, Chuo-Ku, Tokyo-To, Japan, 104-6023, Voice 81-3-6221-9071, Fax: 81-3-6221-9191, shimada@eorc.jaxa.jp

K&C meeting at JAXA/EORC, Feb.28-March 3 2005

Processor update

SIGMA-SAR processor as of Feb. 28 2005

Strip SCANSAR Browse	prf change finished in progress in progress	no prf change finished finished(except small point) finished
Geometric conversion		ground range/geo-code/ortho finished DEM-> problem
Radiometric conversion		Finished (Scansar in progress)
Satellite Yaw steering Faraday rotation		To be corrected (for polarimetry) Use database

Several Pulsar data were acquired and evaluated.

No serious problem were found.

SCANSAR, FBS, FBD, POL modes were evaluated.

three times from 2004 - 2005

Azimuth pattern of raw data

EORC/JAXA/November 8-9, 2004

Launch is Sept. 2005

PRI (pulse repetition interval)

Revolution

7 times/descending or ascending node 3 times/strip (2000 - 3000 km)

Features of PALSAR

Fine Resolution (28MHz), Dual Pol.(14MHz), Full. Pol., SCANSAR

8.9 m antenna gives finer resolution. Higher penetration to the Earth

```
Low processing efficiency, Faraday rotation
```

Main modes

(off-nadir of 21, 34, 41), (HH, HH+HV, and full pol.) 5 SCANSAR (short term)

Allocation Fine Single (23%), Fine Dual (47%), SCANSAR (23%), Full-pol.(7%) 20,0

EUKC/JAAA/NOVEIIIDEI 0-9, 2004

Out of PALSAR's 132 modes, the following 7 (11) will be calibrated with high priority.

Mode	pol.	incidence angle	data rate
FBS(28MHz)	НН	21, 34, <mark>41</mark> degrees	240 Mbps
FBD(14 MHz)	HH+HV	34, <mark>41</mark> degrees	240 Mbps
DIRECT(14)	НН	21, 34, 43	120 Mbps
SCANSAR	НН	5 SCANs	120 Mbps
Polarimetry	HH+HV+VH+VV	21 degrees	240 Mbps
		6(11) modes	

PALSAR calibration site

EORC/JAXA/November 8-9, 2004

Tomakomai-Calibration Site

Hokkaido, Japan Pine, managed Forest

3m trihedral CRx2 1 - descending 1 - ascending 38 dBm2 lat :42.6(deg) lon:141.7 (deg) height:

All the PALSAR modes

EORC/JAXA/November 8-9, 2004

CAL/VAL and Science team members (PALSAR)

JAXA	PI, Node
JAXA(EORC/Research analysis)	Hiroshi Kimura (Gifu Univ.)
Masanobu Shimada,	Masaharu Fujita(Tokyo Met. Univ.)
Takeo Tadono,	Makoto Satake(Nict)
Manabu Watanabe,	Yoshio Yamaguchi(Niigata Univ.)
AKE ROSENQVISI, Rucichi Euruta	Hirovoshi Yamada(Nijgata Univ.)
Kyoloni Futula, Kazuo Obta	Osamu Isoguchi(Toboku Univ.)
Fumito Watanabe	Alexander I. Zekherov, Deshi Derizhenov (Buesia)
Tomoko Yoshizawa	Alexander I. Zakharov, Dashi Danzhapov (Russia)
Etsuko Tashiro	Lars Ulander(Swedish Research Agency)
Mika Matsumoto	David Sandwell(UCSD)
Yuki Daimon	Ridha Touzi(CCRS)
	Kostas Papathanassiou (DLR)
RESTEC	Shane Cloude(University of Adelaide)
Kazuo Isono, Mai Minamisawa, Shuji Ono, Sango,	Paul Siqueira (University of Massattuset)
Sato, Ontaki	Scott Henslev(JPL)
IAXA/GS	Kazuo Ouchi
Shinnichi Suzuki and colleagues	Motovkuki Sato
Chiminoli Cazaki ana concagueo	
JAXA/ALOS	Nede
Norimasa Itoh	
Kazuto Murakami	Jeremy Nicoll, Wade Albright, Scott Arko (ASF)
	Patrick Grimont/Pierre Potin (ESA)
	ERSDAC:
	Hiroshi Watanabe, Motoi Kumai, Hidekuni Kikuchi, Hiroshi Ohta, Tomonori Deguchi

Ionosphere

Faraday rotation depends on electron density and geomagnetic field. Error source for polarization data, but might provide new research trigger.

Faraday rotation angle($0 \le \Omega \le 40$)

$$\begin{pmatrix} Z_{hh} & Z_{hv} \\ Z_{vh} & Z_{vv} \end{pmatrix} = Ae^{\frac{-4\pi r}{\lambda}} \begin{pmatrix} \cos\Omega & \sin\Omega \\ -\sin\Omega & \cos\Omega \end{pmatrix} \begin{pmatrix} 1 & \delta_3 \\ \delta_4 & f_2 \end{pmatrix} \begin{pmatrix} S_{hh} & S_{hv} \\ S_{vh} & S_{vv} \end{pmatrix} \begin{pmatrix} 1 & \delta_1 \\ \delta_2 & f_1 \end{pmatrix} \begin{pmatrix} \cos\Omega & \sin\Omega \\ -\sin\Omega & \cos\Omega \end{pmatrix} + \begin{pmatrix} N_{hh} & N_{hv} \\ N_{vh} & N_{vv} \end{pmatrix}$$

$$\begin{bmatrix} \left(\cos\Omega & \sin\Omega \\ -\sin\Omega & \cos\Omega \end{pmatrix} \begin{pmatrix} 1 & \delta_3 \\ \delta_4 & f_2 \end{pmatrix} \right]^{-1} \begin{pmatrix} Z_{hh} & Z_{hv} \\ Z_{vh} & Z_{vv} \end{pmatrix} - \begin{pmatrix} N_{hh} & N_{hv} \\ N_{vh} & N_{vv} \end{pmatrix} \begin{bmatrix} 1 & \delta_1 \\ \delta_2 & f_1 \end{pmatrix} \begin{pmatrix} \cos\Omega & \sin\Omega \\ -\sin\Omega & \cos\Omega \end{pmatrix} \Big]^{-1} = Ae^{\frac{-4\pi r}{\lambda}} \begin{pmatrix} S_{hh} & S_{hv} \\ S_{vh} & S_{vv} \end{pmatrix}$$

$$\Omega = \frac{K}{f^2} \int_0^h NB \cos \psi \sec \theta_0 dh \approx \frac{K}{f^2} \overline{B \cos \psi \sec \theta_0} \times TEC$$

N:electron density K: 2.365e4 in SI units f:frequency B:magnetic flux density θ : off nadir angle

 $\boldsymbol{\psi} :$ angle between radar line of sight and magnetic field

