

K&C Initiative

An international science collaboration led by JAX

Takeshi Motohka, Masanobu Shimada, Rajesh Thapa, Manabu Watanabe

JAXA Earth Observation Research Center

Science Team meeting #21 – Phase 3 Result Presentations Kyoto Research Park, Kyoto, Japan, December 3-4, 2014

Project objectives

The study aims to investigate time-series ALOS PALSAR data for more accurate/effective forest change mapping

1. Backscattering coefficient (gamma-zero, γ^0)

2. Interferometric coherence

Study area: Riau province, Sumatra Island, Indonesia

K&C Initiative An international science collaboration led by JA.

Project objectives

The study aims to investigate time-series ALOS PALSAR data for more accurate/effective forest change mapping

1. Backscattering coefficient (gamma-zero, γ^0)

2. Interferometric coherence

Study area: Riau province, Sumatra Island, Indonesia

K&C Initiative An international science collaboration led by JA2

Gamma-naught before/after deforestation

Spatial pattern of y⁰ changes

Accuracy of the deforestation detection using gamma-zero changes

Gamma-zero HV vs. TRMM 10-day precipitation

Detection accuracy vs. TRMM 10-day precipitation

Annual deforestation map of Riau, Indonesia

ALOS

K&C Initiative An international science collaboration led by JAX

Forest loss trends in Indonesia by PALSAR (1000 ha)

ALOS

	Loss, 2008	Loss, 2009	Loss, 2010
Sumatra	661	898	452
Kalimantan	467	845	363
Indonesia Total	1,634	2,342	1,041

Project objectives

The study aims to investigate time-series ALOS PALSAR data for more accurate/effective forest change mapping

1. Backscattering coefficient (gamma-zero, γ^0)

2. Interferometric coherence

Study area: Riau province, Sumatra Island, Indonesia

K&C Initiative An international science collaboration led by JA

Forest change detection using coherence change

K&C Initiative An international science collaboration led by JAX.

PALSAR coherence and temporal baseline

LOS

K&C Initiative An international science collaboration led by JAXA

Characteristics of PALSAR 46-days coherence

ALOS

K&C Initiative An international science collaboration led by JAX.

K&C Initiative An international science collaboration led by JAXA

Land cover (WWF map)

Time-series average coherence (2010) 0.2 0.4 0.6

Coherence of each land cover type

K&C Initiative An international science collaboration led by JAX.

ALOS

Low coherence at acacia plantations <- rapid growth ?

Fig. 2 Forest plantation of *Acacia mangium* in the targeted area: (a) 1st year, (b) 3rd year, (c) 4th year, (d) 5th year and (e) 6th year. A permanent sample point (PSP) pole can be seen in the foreground of images (a) and (d).

Kobayashi et al., 2012

Detection accuracy of the coherence change method (ROC curve)

Coherence based

Gamma-zero based

Coherence based

Gamma-zero based

16 looks, averaging filter for 5 x 5 pixels

Summary

K&C Initiative

An international science collaboration led by JAX

Gamma-zero based forest change detection

- Polarization: HV
- Automatic, low computation cost
- Accuracy: > 70%
- Application: early warning (illegal deforestation, forest fires, etc.)

Coherence based forest change detection

- Polarization: HH (many FBS mode data can be used)
- Automatic, high computation cost (InSAR process)
- Low latency: more than two acquisitions after deforestation are required.
- Accuracy: > 90%
- Application: inventory