

K&C Initiative An international science collaboration led by JAX

Product Delivery Report for K&C Phase 3

Christian Thiel et al. Friedrich-Schiller-University Jena, Germany

Science Team meeting #21 – Phase 3 Result Presentations Kyoto Research Park, Kyoto, Japan, December 3-4, 2014

- □ GSV retrieval using POLSAR data
- □ GSV retrieval using INSAR coherence and backscatter
- □ GSV retrieval using multitemporal mosaic backscatter data
- Forest cover and forest cover change mapping using mosaic backscatter data

Results and significant findings

- **GSV retrieval using POLSAR data**
- □ GSV retrieval using INSAR coherence and backscatter
- □ GSV retrieval using multitemporal mosaic backscatter data
- Forest cover and forest cover change mapping using mosaic backscatter data

K&C Initiative An international science collaboration led by JAXA

ALOS

ALOS An international science collaboration led by JAXA

HHVV VanZyl Ground/ Freeman Yamaguchi **Test Sites** HV HH/HV VV/HV Alpha Entropy Vol Vol Vol Volume coherence Shestakovsky-N 0.75 0.46 0.54 -0.82 0.76 0.76 0.71 0.72 0.72 -0.75 Primorsky-E 0.65 0.46 -0.59 0.58 0.61 0.61 0.63 -0.59 0.29 0.60 Primorsky-W 0.05 -0.23 0.25 0.64 -0.24 0.65 0.08 0.19 0.63 0.64 Chunsky-E 0.81 0.63 0.65 -0.78 0.73 0.76 0.82 0.82 0.82 -0.74 Chunsky-N -0.72 0.73 0.60 0.68 0.69 0.70 0.75 0.76 0.76 -0.66 Chunsky-S 0.54 0.11 0.12 -0.41 0.38 0.32 0.49 0.50 0.50 -0.35 Chunsky-W 0.51 0.40 0.45 -0.54 0.51 0.52 0.50 0.50 0.51 -0.48 Bolshe-NE 0.86 -0.12 -0.23 -0.72 0.63 0.59 0.85 0.85 0.84 -0.62 Bolshe-SE 0.70 0.30 0.30 -0.68 0.57 0.53 0.67 0.68 0.68 -0.57 Bolshe-NW 0.82 0.21 0.59 -0.80 0.69 0.72 0.75 0.77 0.79 -0.75 Bolshe-SW 0.59 0.07 0.23 -0.48 0.37 0.39 0.50 0.53 0.54 -0.44

K&C Initiative An international science collaboration led by JAX

Linear Pearson correlation coefficients for growing stock volume against SAR parameters

Summary of findings

• Double-bounce and volume scattering powers show significant correlation with GSV

- The correlation between GSV and surface scattering is highly variable
- The correlation is enhanced if the ratio of volume-to-ground scattering is used

- □ GSV retrieval using POLSAR data
- □ GSV retrieval using INSAR coherence and backscatter
- □ GSV retrieval using multitemporal mosaic backscatter data
- Forest cover and forest cover change mapping using mosaic backscatter data

Impact of Tree Species on PALSAR INSAR Coherence over Siberian Forest at frozen and unfrozen Conditions

LOS

K&C Initiative An international science collaboration led by JAX

Impact of Species: Results

Frozen conditions

Unfrozen conditions

Magnitude of interferometric coherence vs. GSV for the site Primorsky East

Impact of Species: Results Summary

Deviation of tree species specific magnitude of coherence from average – all sites.

Summary and Conclusions

- Very low impact of tree species on coherence at frozen conditions
- At unfrozen conditions the impact is increased (in particular for fir and larch)
- At unfrozen conditions increased intra-species variance of coherence most likely caused by spatiotemporal variable environmental conditions

Frozen conditions

Unfrozen conditions

- □ GSV retrieval using POLSAR data
- □ GSV retrieval using INSAR coherence and backscatter
- □ Forest biomass retrieval using multitemporal ScanSAR data
- Forest cover and forest cover change mapping

K&C Initiative An international science collaboration led by JA2

LOS

Radar backscatter and coherence as function of GSV for the inventory site Hrebtovsky S. The backscatter image (HV) polarisation was acquired at unfrozen conditions, while the data for the coherence image was acquired at frozen conditions.

K&C Initiative An international science collaboration led by JAXA

• = average;] = standard deviation; = minimum/maximum; 46, 92,138 = temporal baseline [d]

ALOS An international science collaboration led by JAXA

Example for delineation of GSV Map using multi-temporal backscatter & coherence (Hrebtovsky site)

Results for the other sites

	Chunsky E	Chunsky N	Shesta	Hrebt S	Nishni
R² coh + int	0.79	0.79	0.54	0.57	0.83
R² coh	0.80	0.78	0.37	0.55	0.82
R² int	0.67	0.70	0.56	0.50	0.82
RMSE [m³/ha] coh + int	56.6	41.2	50.4	57.4	48.9
RMSE [m³⁄ha] coh	56.4	42.4	52.7	61.9	50.7
RMSE [m³/ha] int	71.1	50.3	56.2	59.1	56.1

Rel. RMSE approximately 25% for all sites

ALOS

K&C Initiative An international science collaboration led by JA

Conclusions

- Coherence at frozen conditions offers the largest potential for GSV estimation
 - Saturation at 230 m³/ha, R² between coherence and GSV is 0.58
 - Comparable results were found in other studies using ERS-1/2 Tandem data
- Backscatter less sensitive
 - Saturation at 75-100 m³/ha, R² between backscatter and GSV 0.42 (HH) 0.48 (HV)
- Combination of backscatter and coherence led to improvement of GSV estimation, in particular exclusion of areas with contradictory GSV (coherence vs. backscatter) helpful
- Demonstrated: Potential of ALOS PALSAR to map the GSV of the Siberian forest with a precision close to the accuracy of the conventional forest inventory data (relative RMSE approx. 25%)
- Data availability: At each region in Siberia in average 4 coherence images (temporal baseline 46 days) acquired at frozen conditions and 6 FBD backscatter images acquired at unfrozen conditions are available

ALOS An international science collaboration led by JAXA

Outlook: Implementation of non-parametric methods (MaxEnt*), Bolshe Murtinsky

ALOS An international science collaboration led by JAXA

Outlook: Implementation of non-parametric methods (MaxEnt*), Bolshe Murtinsky

- □ GSV retrieval using POLSAR data
- □ GSV retrieval using INSAR coherence and backscatter
- **GSV retrieval using multitemporal mosaic backscatter data**
- Forest cover and forest cover change mapping using mosaic backscatter data

K&C Initiative An international science collaboration led by JAXA

LOS

ALOS PALSAR 25 m backscatter mosaic data

- Annual HH / HV mosaic based on summer acquisitions
- 2007 2010
- 25 m spatial resolution
- Covers area of 569.400 km² in Central Siberia
- GSV mapping using forest inventory and random forest regression

ALOS An international science collaboration led by JAXA

GSV mapping using multi-annual ALOS PALSAR mosaic data (2007-2010)

Relationship between forest inventory and SAR-based GSV estimates

GSV mapping using multi-annual ALOS PALSAR mosaic data (2007-2010)

ALOS

Table 4. Validation results, overall statistics of SAR and forest inventory (FI)-based GSV comparison (m³/ha).

Label	Characteristics	2007	2008	2009	2010	Multi-Temporal
Emin	$\Delta \text{ GSV}_{\min}$	-259.1	-249.6	-264.9	-285.8	-247.9
Emax	$\Delta \text{ GSV}_{\text{max}}$	202.5	216.5	217.6	208	221.2
ME	Mean Δ GSV (SAR-FI)	-1.3	1.4	6.3	-14.6	3.7
SD	Δ GSV SD	55.3	55.2	57.6	61.6	54.3
RMSE	Root Mean Square Error	55.3	55.2	57.9	63.3	54.4

- □ GSV retrieval using POLSAR data
- □ GSV retrieval using INSAR coherence and backscatter
- □ GSV retrieval using multitemporal mosaic backscatter data
- Forest cover and forest cover change mapping using mosaic backscatter data

ALOS An international science collaboration led by JAX

Forest cover and disturbance products

 □ Forest Cover & Disturbance Maps
↓ 2007 and 2010
↓ Forest
↓ Forest Regrowth
↓ Non-Forest
□ Change Map
↓ Forest cover loss 2007-2010

Mapping different forest cover and disturbance stages

Abansk / Dolgomostowsk

- Decreasing forest area due to ongoing logging activities
- Increasing forest regrowth areas due to forest recovery

Padunsk

- Increasing forest areas due to recovering of old clear cuts
- Decrease of non-forest and forest regrowth patterns

K&C Initiative

An international science collaboration led by JAX

Forest cover map - cross-comparisons

- □ GSV retrieval using POLSAR data
- □ GSV retrieval using INSAR coherence and backscatter
- □ GSV retrieval using multitemporal mosaic backscatter data
- Forest cover and forest cover change mapping using mosaic backscatter data

ALOS

K&C Initiative An international science collaboration led by JAXA

Yearly forest loss mapping

ALOS Yearly forest loss mapping

K&C Initiative An international science collaboration led by JAX.

Map projection: Asia North Albers Equal Area Conic

Deliverables –

K&C Initiative

An international science collaboration led by JAX

Papers and reports (1)

1. Published

- C. THIEL & C. SCHMULLIUS (2013): Investigating the impact of freezing on the ALOS PALSAR InSAR phase over Siberian forests.-In: Remote Sensing Letters 4 (9), pp. 900-909.
- C. THIEL & C. SCHMULLIUS (2013): Investigating ALOS PALSAR interferometric coherence in central Siberia at unfrozen and frozen conditions: implications for forest growing stock volume estimation.-In: Canadian Journal of Remote Sensing 39 (3), pp. 232-250.
- T. A. CHOWDHURY, C. THIEL, C. SCHMULLIUS & M. STELMASZCZUK-GORSKA (2013): Polarimetric Parameters for Growing Stock Volume Estimation Using ALOS PALSAR L-Band Data over Siberian Forests.-In: Remote Sensing 4, pp. 5725-5756.
- C. THIEL & C. SCHMULLIUS (2014): Impact of Tree Species on Magnitude of PALSAR Interferometric Coherence over Siberian Forest at Frozen and Unfrozen Conditions.-In: Remote Sensing 6(2), pp. 1124-1136.
- T. A. Chowdhury, C. Thiel & C. Schmullius (2014): Growing stock volume estimation from L-band ALOS PALSAR polarimetric coherence in Siberian forest.-In: Remote Sensing of Environment, in press.
- C. HÜTTICH, C. SCHMULLIUS, C. THIEL, C. PATHE, S. BARTALEV, K. EMELYANOV, M. KORETS, A. SHVIDENKO, D. SCHEPASCHENKO (2012): ZAPÁS: Assessment and monitoring of forest resources in the framework of EU-Russia space dialogue.-In: European Commission [Ed.], Let's embrace space, Vol. II, pp. 164-171.
- C. HÜTTICH, C. SCHMULLIUS, C. J. THIEL, S. BARTALEV, K. EMELYANOV, M. KORETS, A. SHVIDENKO, V. SKUDIN & L. VASHCKOUK (2012): Assessment and Monitoring of Siberian Forest Resources in the Framework of the EU-Russia ZAPÁS Project.-In: Proceedings of International Geoscience and Remote Sensing Symposium IGARSS, Munich, Germany, pp. 7208-7211.

Deliverables –

K&C Initiative

An international science collaboration led by JAX

Papers and reports (2)

1. Published

- C. THIEL & C. SCHMULLIUS (2012): Effect of Tree Species on PALSAR InSAR Coherence over Siberian Forest at frozen and unfrozen Conditions.-In: Proceedings of International Geoscience and Remote Sensing Symposium IGARSS, Munich, Germany, pp. 190-193.
- C. THIEL & C. SCHMULLIUS (2013): Investigation of the impact of freezing on the scattering phase center in Siberia using ALOS PALSAR FBS and FBD data.-In: Proceedings CD of ESA Living Planet Symposium, 09 – 13 September, Edinburgh, UK.
- C. THIEL & C. SCHMULLIUS (2013): Impact of Freezing on ALOS PALSAR Interferometric Coherence in Central Siberia.-In: Proceedings CD of ESA Living Planet Symposium, 09 – 13 September, Edinburgh, UK.
- M. STELMASZCZUK-GÓRSKA, C. THIEL & C. SCHMULLIUS (2013): Optimisation of the coherence estimation window size aiming at growing stock volume retrieval in Siberian forest using ALOS PALSAR data.-In: Proceedings CD of ESA Living Planet Symposium, 09 – 13 September, Edinburgh, UK.
- C. HÜTTICH, M. STELMASZCZUK-GÓRSKA, J. EBERLE, P. KOTZERKE & C. SCHMULLIUS (2014): Operational forest monitoring in Siberia using multi-source Earth Observation data. –In: Siberian Journal of Forest Science, in press.
- M. STELMASZCZUK-GÓRSKA, C. THIEL & C. SCHMULLIUS (2014): Large-scale forest change monitoring scheme. GIONET deliverable: http://www.gionet.eu/wp-content/uploads/GIONET-deliverable_stelmaszczuk_gorska_corrected_.pdf
- S. Wilhelm, C. Hüttich, M. Korets & C. Schmullius (2014): Large Area Mapping of Boreal Growing Stock Volume on an Annual and Multi-Temporal Level Using PALSAR L-Band Backscatter Mosaics. Forests 5, 8, 1999-2015.
- C. Hüttich, M. Korets, S. Bartalev, V. Zharko, D. Schepaschenko, A. Shvidenko, & C. Schmullius (2014): Exploiting Growing Stock Volume Maps for Large Scale Forest Resource Assessment: Cross-Comparisons of ASAR- and PALSAR-Based GSV Estimates with Forest Inventory in Central Siberia. Forests, 5, 8, 1753-1776.

ALOS An international science collaboration led by JAXA

Deliverables – Data sets and Thematic products (mosaics, classification maps etc.)

1. Completed and Delivered to JAXA

• Growing stock volume maps based on forest inventory data from sample sites (delivered: 08/10/2012)

2. Completed, but not yet delivered (please deliver ASAP)

- Yearly forest loss map
- Forest Cover & Disturbance Maps (2007, 2010)
- Forest cover loss 2007-2010
- GSV maps using multi-annual ALOS PALSAR mosaic data (2007-2010)