ALOS-2 and PALSAR-2 Development Status

P

Cal-Val Science Team (CVST) meeting 13,11,25 @ Tsukuba Space Center JAXA ALOS-2 project team Kankaku Yukihiro

Agenda

> Mission and overview of ALOS-2

Specification of PALSAR-2

Features of PALSAR-2

> Development status of ALOS-2 and PALSAR-2

- *Disaster Monitoring* for Secure the public safety
 - Fast access to damaged areas and continuous monitoring
 - In-SAR data necessary for deformation forecast/monitoring
- *Land Monitoring* for Preserve and manage national land
 based upon archived data
- <u>Agricultural Monitoring</u> for Facilitate food supply
 necessary for evaluation of irrigated rice
- *Natural Resource Exploration* for Facilitate natural resources and energy supply
 necessary for detecting oil and mineral resources in the ground and seabed
- <u>Global Forest Monitoring</u> for Resolve global-level environmental issues
 - global monitoring of tropical rain forests to identify carbon sinks

Satellite	JERS-1	ALOS	ALOS-2
SAR sensor	SAR	PALASR	PALSAR-2
Operation period	1992 – 1998	2006 - 2011	JFY 2013 -
Resolution	18 m	10 m Upgrad	e! 3m / 10 m
Swath	75 km	70 km	50 km / 70 km
LSDN	10:30	10:30	^{ves:} 12:00
Incidence angle	38 degrees fixed	8 - 60 degrees 💡	8 – 70 degrees
Look direction	Right	Right	Right or Left
Mission sensor	SAR+OPT	SAR+OPT	SAR
Revisit time	44 days	46 days	14 days

Overview of ALOS-2

Orbital information

Orbit Launch Altitude : 628 km Revisit time

: Sun-Synchronous

- : JFY 2013
- : 14 days
- : 12:00

PALSAR-2 information

Phased Array type L-band SAR

- Imaging modes
- Antenna size
- Bandwidth [MHz] : 14 / <u>28 / 42 / 84</u>
- **Resolution** [m]
- Swath [km]

- : Spotlight / Stripmap / ScanSAR
- : 3 m for El, 10 m for Az
- : 1 (Az) (Spotlight) / 3 or 6 or 10 (Stripmap) / 100 (ScanSAR)
- : 25 (Spotlight) / 50 or 70 (Stripmap) / 350 or 490 (ScanSAR)

PALSAR-2 Sub-System

PALSAR-2 Imaging Modes

Specification of PALSAR-2

Madag		T	Smadlight		Stripmap			ScanSAR			
widdes		Unit	Spottignt	Ultra-Fine	High-sensitive		Fine		ScanSAR		ScanSAR
Center Frequen	cy	MHz	125	57.5			1236.5 / 12	257.5 / 1278.5	selectable		
Bandwidth		MHz	84	84	42		28		14	<u>28</u>	14
Resolution		m	Rg x Az 3 x 1	3	6		10		100 (3look)	100 (3look)	60 (1.5look)
Incidence angle	e	deg.	8~70	8~70	8~70	20~40	8~70	23.7	8~70	8~70	8~70
Swath		km	Rg x Az 25 x 25	50	50	40	70	30	350 (5Scan)	350 (5Scan)	<u>490</u> (7Scan)
Polarization*		N/A	SP	SP/DP	SP/DP CP	FP	SP/DP CP	FP	SP/DP	SP/DP	SP/DP
NESZ		dB	-24	-24	-28	-25	-26	-23	-26	-23	-26
S/A	Rg	4D	25	25	23	23	25	20	25	25	20
ð/A	Az	ав	20	25	20	20	23	23	20	20	20

@ Incidence angle is 37 degrees

Follow on PALSAR

ScanSAR-ScanSAR InSAR

* : Single Polarization HH or HV or VV or VH

: Dual Polarization HH+HV or VV+VH

: Full Polarization HH+HV+VV+VH

: Compact Polarization Circular or 45 degrees oriented for EXPERIMENTAL MODE

Swath image of PALASR-2

Yellow width: Swath 490 km (ScanSAR wide mode)

The relationship of beam numbers

between ScanSAR, Ultra-Fine and Fine

Beam um	lber	1	2	3	4	5	6	7	8	9	10	11	12
	ScanSAR	9.1	15.1	20.7	26.2	30.8	34.9	38.6	41.8	44.7	47.3	<i>49.5</i>	51.5
	350 km			W1)				W3		
Off nadir	550 KIII						W2						
[deg]	400 1									V2			
[6]	490 KIII				V1							V	3
	Ultra-Fine	9.6	13.9	18	21.9	25.6	29.1	32.4	35.4	38.2	40.6	42.7	44.7
	Fine	9. 8	14.7	19.4	23.8	28.2	32.5	36.2	39.3	41.9	44.3	46.4	48.2
Beam um	ber	13	14	15	16	17	18	19	20	21	22	23	24
	ScanSAR	53.2	54.7	56.1	57.3	58.3	-	-	-	-	-	-	-
								[here i	s sligh	tly dif	ference	e at the	e off
	350 km			W4			n	adir of	each	beam l	betwee	en Fine	and
Off nadir							Sc	anSAI	R mod	e beca	use of	the an	tenna
[deg]	490 km			V3				ma	nagen	nent fo	or the s	swath.	
	Ultra-Fine	46.4	<i>48</i>	49.5	50.9	52.1	53.3	54.3	55.3	56.2	57	57.7	58.4
	Fine	49. 8	51.2	52.4	53.5	54.6	55.5	56.3	57.1	57.8	58.5	-	-

The overlap swath estimation for interferometry

between ScanSAR and Fine

	overlap swath [km]							
	W1-1	W1-2	W1-3	W1-4	W1-5			
F1	58	0	0	0	0			
F2	0	60	0	0	0			
F3	0	13	48	0	0			
F4	0	0	26	36	0			
F5	0	0	0	46	26			
F6	0	0	0	0	40			

The values in Red Bold are showed the fully overlap between ScanSAR sub-swath and Stripmap.

The overlap swath estimation for interferometry

between ScanSAR and Fine

	overlap swam [km]						
	W3-1	W3-2	W3-3	W3-4	W3-5		
F8	12	0	0	0	0		
F9	60	0	0	0	0		
F10	7	57	0	0	0		
F11	0	19	38	0	0		
F12	0	0	30	22	0		
F13	0	0	0	54	2		
F14	0	0	0	0	50		
F15	0	0	0	0	23		

overlan swath [km]

overlap swath [km]

The overlap swath estimation for interferometry between ScanSAR and Ultra-Fine (High sensitive) Exploration Agenc

overlap swath [km]						
	W1-1	W1-2	W1-3	W1-4	W1-5	
U1	50	0	0	0	0	
U2	7	48	0	0	0	
U3	0	23	28	0	0	
U4	0	0	0	8	0	
U5	0	0	0	50	0	
U6	0	0	0	24	32	
U7	0	0	0	0	35	

<u>The overlap swath estimation for interferometry</u> between ScanSAR and Ultra-Fine (High sensitive)

overlap swath [km]						
	W3-1	W3-2	W3-3	W3-4	W3-5	
U10	34	0	0	0	0	
U11	40	13	0	0	0	
U12	0	50	0	0	0	
U13	0	15	35	0	0	
U14	0	0	37	14	0	
U15	0	0	0	50	0	
U16	0	0	0	13	38	
U17	0	0	0	0	37	

overlap strain [hin]					
	W4-1	W4-2	W4-3	W4-4	W4-5
U17	17	0	0	0	0
U18	50	0	0	0	0
U19	9	39	0	0	0
U20	0	34	17	0	0
U21	0	0	50	0	0
U22	0	0	11	42	0
U23	0	0	0	28	20
U24	0	0	0	0	50

overlan swath [km]

Allocated frequency range in L-band

Allocated L-band for EESS (active) is from 1 215 to 1 300 MHz (max. bandwidth is 85 MHz).

Swath Width

PALSAR Fine ALOS-2 Fine 70 km FEATURE OF PALSAR-2 ScanSAR-ScanSAR InSAR

The advantage of PALSAR-2 for high coherence ScanSAR-ScanSAR InSAR :

- ✓ The wide bandwidth (28 MHz) observation for ScanSAR mode
- ✓ The controllable burst timing for ScanSAR mode
- ✓ The high accuracy (500 m tube) orbit control

<u>FEATURE OF PALSAR-2</u> <u>ScanSAR-ScanSAR InSAR</u>

• <u>Bandwidth</u>

- PALSAR-2 can operate ScanSAR mode with <u>28MHz</u> bandwidth.

• Image pairs for ScanSAR InSAR

- PALSAR-2 controls argument of latitude for each observation.
- For ScanSAR mode, each 1st burst timing will be aligned.
- \Rightarrow The beam overlap ratio for sub-swath pairs is more than 90 %

<u>FEATURE OF PALSAR-2</u> <u>New Technologies</u>

- High power amplifier for TRM (Transmitting and Receiving Module)
 GaN device is used for HPA.
- DRC (Dual Receive Channel) technique
 - Pulse Repetition Frequency (PRF) could be reduced with DRC.
- Compact Polarimetry (CP)
 - PRF could be reduced with CP observation.
 - ALOS-2 is the first satellite using CP in the world!
 - CP is **experimental** mode because imaging processing of CP mode should be verified.
- **DS(Down Sampling)-BAQ** data compression
 - Selectable DS-BAQ or conventional BAQ
 - As the result of our simulation, **the amplitude and phase errors are lower** than conventional BAQ.

ALOS-2 SYSTEM VERIFICATION

RESULTS OF VERIFICATION

Initial electrical and functional test

Purpose

- •Electrical connection; system -Components
- •Electrical function of all sub-system
- •Total function and performance as system

Thermal vacuum test

- Purpose
- Verify the thermal design of satellite system
- •Function and performance of thermal control device
- •Electrical function and performance under vacuum

EMC test is on going Pu

- Purpose
- •Function and performance of EMC condition
- •Now on going

The requirements of total function and **Carlor** performance of system was confirmed to be satisfied.

RESULTS OF VERIFICATION

RF Impulse response

in Vacuum condition

confirmation total system function without discharge
confirmation of resolution

Purpose

Mode	chirp	resolution [m]
Ultra-Fine	UP	2.79
	DOWN	2.81
High-sensitive	UP	5.69
	DOWN	5.75

Purpose

- confirmation antenna of the function in space environment
- verification of the thermal modes
- As limit of chamber size, the test was carried out twice.

RESULTS OF VERIFICATION

Final test of

PALSAR-2 antenna

confirmation of total function for observation

Purpose

• confirmation of antenna pattern with full apterutre

The final test was complete with good results. Now, the antenna is mounted on ALOS-2 system.

- ALOS-2 will succeed to ALOS mission with enhanced capabilities.
 - High resolution, Wide swath, Good NESZ and Various Polarization
- Quick response to disasters and flexible observation
 Agile right- or left-looking function by satellite body rolling.
- PALSAR-2 sub-system test was completed and ALOS-2 System final test including environmental test have been on-going.
- ALOS-2 will be launched by the H-IIA Launch Vehicle.

THANK YOU FOR YOUR ATTENTION