biomass

Science I

mmm

EARTH EXPLORER 7 USER CONSULTATION MEETING

An Earth Explorer to observe forest biomass

European Space Agency

Primary Mission Objectives

- 1. Reducing the major uncertainties in carbon fluxes linked to Land Use Change, forest degradation and regrowth
- Providing support for International Agreements (UNFCCC and REDD+)
- 3. Inferring landscape carbon dynamics and supporting predictions
- 4. Initialising and testing the land component of Earth System models
- 5. Providing key information on forest resources, ecosystem services, biodiversity and conservation

Secondary objectives

- 1. Sub-surface geology in deserts
- 2. DTMs under dense vegetation
- 3. Glacier and ice sheet velocities

Biomass product requirements

Urgently required for IPCC, UNFCCC, REDD, national forest planning

A single P-band satellite can provide both polarimetric and interferometric coverage

esa

Relation between radar backscatter and aboveground biomass at L, P and VHF bands

Payload overview

- P-band (435 MHz) Synthetic Aperture Radar (SAR)
- Bandwidth of 6 MHz
- Full polarimetric SAR
- Multi-pass interferometry
- Single antenna beam
- Stripmap mode
- Satellite roll for beam repointing

A single P-band satellite can deliver 3 independent types of information for biomass

PollnSAR TomoSAR PolSAR (Polarimetric SAR Interferometry) (SAR Tomography) (SAR Polarimetry) ΛZ 7 X Height Height

Biomass | EE7 User Consultation Meeting | Graz, Austria | 5-6 March 2013 | Slide 7

European Space Agency

esa

Operations concept

Event	Baseline	Option
Launch & Early Orbit Phase	1 week	
Commissioning	5 months	
Tomographic phase	3 months	1 year
Orbit change	2 weeks	N/A
Nominal phase	4.7 years	4 years
Disposal	9 days	

PoISAR and PolinSAR are combined to estimate biomass

Campaigns used to address questions, develop retrieval methods and assess performance

Major recent ESA campaigns:

- 1. Kalimantan 2004 (Indrex)
- 2. Remningstorp 2007 (BioSAR 1), 2010 (BioSAR 3)
- 3. Krycklan 2008 (BioSAR 2)
- 4. F. Guiana 2009 (TropiSAR), 2011-13 (TropiScat)

Biomass | EE7 User Consultation Meeting | Graz, Austria | 5-6 March 2013 | Slide 10

Global consistency in the biomass – P-band backscatter relationship

- 1. Similar power-law relationships between backscatter and biomass are found for all forests where we have data
- 2. Inversion techniques need to deal with data dispersion and differences between different types of forest

Using polarisation & slope information radically improves measurement accuracy

Remningstorp 70 MHz data: varying environmental conditions over 3 months

Consistent biomass estimates are obtained after correcting environmental effects

Boreal biomass: Biomass performance estimated from campaign data

Reference

BIOMASS specification (6 MHz bandwidth, 200 m grid)

PolSAR algorithm trained at Krycklan, located 720 km from Remningstorp

Increases & decreases in boreal biomass can be measured over a 4-year period

Change in biomass from spring 2007 to autumn 2010 at Remningstorp; resolution = 200 m

Radar RMSE ~ 20 t/ha (based on 6 reference plots).

Lidar RMSE is comparable (slightly worse).

Biomass will be able to measure a **20 ton/ha change** over a 4-year period.

In tropical forest, topography has important effects on the backscatter-biomass relationship

Tropical forest, French Guiana

Correction for topographic effects and scattering mechanisms using polarimetry and a DEM.

Biomass | EE7 User Consultation Meeting | Graz, Austria | 5-6 March 2013 | Slide 16 In situ biomass (t.ha⁻¹)

European Space Agency

sa

PolInSAR has mapped height over tropical and boreal sites

Height maps from PolInSAR

Tropical forest Kalimantan, Indonesia

11

Biomass | EE7 User Consultation Meeting | Graz, Austria | 5-6 March 2013 | Slide 17

European Space Agency

Allometry converts height to biomass

To estimate biomass requires relationship between biomass and height (allometry)

Allometric equations derived from 493 in situ plots in tropical forests

Biomass | EE7 User Consultation Meeting | Graz, Austria | 5-6 March 2013 | Slide 18

SAR tomography, a new concept to explore 3D forest structure

Generates images of different forest layers from multi-orbit SAR images

SAR tomography provides basic information to improve Biomass retrieval algorithms

TomoSAR:

- 1. Provides a 3D reconstruction of forest backscatter.
- 2. Allows an interpretation of scattering processes
- 3. Gives guidance to the PolSAR and PolInSAR retrieval algorithms.

sa

Combining estimators improves performance in tropical forests (1)

Paracou, French Guiana, 6 MHz data; in situ biomass = 260-430 ton/ha

Biomass | EE7 User Consultation Meeting | Graz, Austria | 5-6 March 2013 | Slide 21

esa

Combining estimators improves performance in tropical forests (2)

Biomass | EE7 User Consultation Meeting | Graz, Austria | 5-6 March 2013 | Slide 22

European Space Agency

esa

Seasonal variation: coherence is higher in the dry season, giving better height estimates

TropiScatt experiment:

- Tower-based P-band tomographic measurements.
- Measurements every 15 minutes.
- Started December 2011, still running.

esa

Slow variation in backscatter - PolSAR retrieval must adapt to moisture changes

Biomass | EE7 User Consultation Meeting | Graz, Austria | 5-6 March 2013 | Slide 24

European Space Agency

Space Object Tracking Radar constraints have little effect on primary mission objectives

Biomass performance: forest summary

- In boreal forests, geophysical variability limits biomass inversion; simulations indicate biomass relative RMSE ~30%.
- In tropical forests, topography is the limiting factor; expected relative RMSE < 20% for biomass > 120 t/ha, decreasing as biomass increases. Slow trends in backscatter need adaptive algorithms.
- 3. Relative RMSE of height:
 - < 20% for all biomass values in the tropics
 - between 20% and 30% for boreal forests with biomass > 100 t/ha.
- Deforestation removing ~80% of high biomass tropical forests should be detectable with 90% accuracy at 50 m resolution.
- Boreal observations show that biomass changes of ~ 20 t/ha can be detected over a 4-year period.

http://esamultimedia.esa.int/docs/EarthObservation/SP1324-1_BIOMASSr.pdf

http://esamultimedia.esa.int/docs/EarthObservation/EE7_Biom ass_Addendum_to_RfS_Final.pdf