Estimation of mangrove structure and biomass from SAR and lidar remote sensing

Lola Fatoyinbo
NASA Goddard Space Flight Center
Biospheric Sciences Laboratory

Marc Simard (JPL)
Amanda Armstrong (GSFC)
Naiara Pinto (UMD)
Hank Shugart (UVA)
Mangroves 101

Mangrove forests are coastal wetlands that contribute to biodiversity and act as major biogeochemical links between upland and coastal regions.

- **Biodiversity:** Habitats for over 1300 species of animals, including many economically important fish and shrimp species.
- **Biogeochemistry:** Among the most productive ecosystems on Earth with 2.5g C m⁻² per day
 - 25% accumulates in mangrove sediments
 - 25% recycled
 - 50% exported to oceans and contributes 10% of C to Global Dissolved Organic Carbon
- **Protection:** They act as a protection of shoreline against topical storms, hurricanes and tidal surges
Mangroves and Carbon

- Mangroves are among the most carbon-rich forests in the tropics, containing on average 1,023 Mg carbon per hectare in above and belowground C.
- Organic-rich soils range from 0.5 m to more than 3 m in depth and account for 49–98% of carbon storage in these systems.
- The estimated economical value of mangrove services varies between $200k to $900k per km² per year (UNEP report 2006).
- New Initiatives such as Reduced Emissions from Deforestation and Degradation (REDD+) and the UN Blue Carbon Initiative are developing frameworks to compensate states for their C storage.

Comparison of mangrove C storage with that of major forest domains (from Donato et al. 2011).
Mangroves are endangered

But as a result of their location and economic value, they are among the most rapidly changing landscapes.

- 35% to 50% of mangrove forests have disappeared in the past 60 years, although no systematic baseline data is available;
- The greatest current threats to mangroves derive from human activities: aquaculture, freshwater diversions, overharvesting and urban and industrial development.
- The effects of climate change, such as sea-level rise and increased extreme climatic events (e.g. hurricanes), may also increase the vulnerability of this ecosystem.
Mangroves are endangered

But as a result of their location and economic value, they are among the most rapidly changing landscapes.

- 35% to 50% of mangrove forests have disappeared in the past 60 years, although no systematic baseline data is available;
- The greatest current threats to mangroves derive from human activities: aquaculture, freshwater diversions, overharvesting and urban and industrial development.
- The effects of climate change, such as sea-level rise and increased extreme climatic events (e.g. hurricanes), may also increase the vulnerability of this ecosystem.
Summary of the major components in **mangrove carbon budgets**: primary production (litter fall, wood and root production) and various sink terms.
Mangrove deforestation generates emissions of 0.02–0.12 Petagrams carbon per year—potentially as much as around 10% of emissions from deforestation globally, despite accounting for just 0.7% of tropical forest area.
Currently, the uncertainty in the magnitude of carbon emissions from land use changes is 66% of the input.

Most of this uncertainty is due to errors in biomass estimation.

1.5 ± 1.0

Uncertainties of biomass measurements

- Extent and Change in Land Cover
- Structure and Biomass
- Carbon Fluxes

Land Use Change
Vegetation structure measurements

To better understand C emissions and ecosystem structure from mangroves and other ecosystems we need to accurately quantify ecosystem biomass, extent and change by measuring horizontal and vertical heterogeneity

- Horizontal structure: in terms of land cover and land cover change
- Vertical structure: in terms of forest height and biomass

- Three complementary technologies meet these science requirements:
 - Lidar
 - Interferometric Synthetic Aperture Radar (InSAR)
 - Polarimetric SAR (PolSAR)
Horizontal Structure of Mangroves
Baseline landcover maps of mangrove cover were scarce and estimates varied greatly per country. Our initial goal was to cover Mozambique, then the continent of Africa. Now there is the USGS Global Mangrove Map (Giri et al, 2011).
• Classified 117 Landsat GeoCover scenes from 2000 era covering all mangrove areas in Africa
• Mosaic of all scenes to cover the continent
• Individual country maps:
 – Facilitation of access for governments
 – Comparison with previous estimates

BUT

• Clouds in the Landcover Maps
• Difficulty of differentiating between mangrove forests and rainforests in Central Africa
Horizontal Structure with L-band SAR

- Polarimetric SAR imaging is sensitive to the forest spatial structure and standing biomass in ways not possible with optical data:
 - It is not affected by clouds
 - SAR data can also be used for forest cover classification and land cover change measurements.
 - In addition to deforestation, we can also detect degradation
- In forests, there is a positive relationship between measured backscatter and aboveground biomass.
Vertical Structure and Biomass of Mangroves
Vertical Structure from Radar & Lidar data

Using SRTM, Field and GLAS for mangrove 3-D structure

SRTM

IceSat GLAS
ICESat/GLAS

- Measures surface elevation along a ground track for 33 days every 4 months
- Best alternative for global canopy height calibration
- Lidar advantage over field data is geolocation accuracy, high sampling density, 3-D geometry of the canopy
- Footprint size of 65-70 m, sampling every 170 m

What is tree height? Where is the top of the canopy? Where is the ground?
We used the GLA14 (Global land altimetry) data product to estimate canopy height.

GLAS footprints are not available in all mangrove areas.

The shape and position describe the canopy vertical structure within the LiDAR footprint.

We only used data from cloud-free profiles.

We excluded waveforms with a single Gaussian peak.
ICESat/GLAS coverage
Vertical Structure from InSAR

- The C-band Radar signal penetrates into the canopy to scatter with all forest components and the ground.
- The radar height estimate (i.e. radar phase center) lies somewhere within the canopy volume, which can be used to estimate canopy height.
- Mangrove height estimates work well because mangroves grow at sea level.
Vertical Structure from Interferometric SAR

- SRTM is used to build a single SRTM DEM covering coastal areas.
- Using the mangrove landcover map, we masked all non-mangrove areas on the SRTM DEM.
- This results in an uncalibrated height map of the mangrove areas.
InSAR-Lidar Fusion

- The SRTM values corresponding to the GLAS shots were extracted.
- We derived linear regressions between the GLAS point’s r_{h100} values and DEM height values to determine the regression equation.

\[y = 0.67x + 1.47 \]
\[R^2 = 0.72 \]
IceSAT/GLAS data over the Yucatan
SRTM calibration using ICESat/GLAS and field work
Studies of forest biomass worldwide have shown that there is a strong correlation between tree size (diameter and height), and tree biomass.

For mangrove forests, a global stand height-biomass allometric equation was calculated by Saenger and Snedaker (1993):

\[
\text{Biomass (Mg ha}^{-1}) = 10.8 \times \text{Height (m)} + 35
\]

We were able to produce height and biomass maps for Mozambique based on field data and SRTM alone, with an RMSE of 1.6 m and 65 Mg/ha.

Then we expanded our work to the entire African continent where we used GLAS height as calibration with an RMSE of 3.5 m.
Height and Biomass Map of Mangrove Forests of Africa

- **Source:** Fatoyinbo & Simard, IJRS 2013

Table: Country Area in km², Total Biomass in Mg, Mean Biomass in Mg/ha

<table>
<thead>
<tr>
<th>Country</th>
<th>Area in km²</th>
<th>Total Biomass in Mg</th>
<th>Mean Biomass in Mg/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angola</td>
<td>154</td>
<td>1,441,200</td>
<td>93</td>
</tr>
<tr>
<td>Benin</td>
<td>18</td>
<td>137,719</td>
<td>76</td>
</tr>
<tr>
<td>Cameroon</td>
<td>1,483</td>
<td>25,334,900</td>
<td>171</td>
</tr>
<tr>
<td>Congo</td>
<td>15</td>
<td>267,603</td>
<td>178</td>
</tr>
<tr>
<td>Cote d'Ivoire</td>
<td>32</td>
<td>406,516</td>
<td>124</td>
</tr>
<tr>
<td>Djibouti</td>
<td>17</td>
<td>1,653,170</td>
<td>90</td>
</tr>
<tr>
<td>DRC</td>
<td>183</td>
<td>51,570</td>
<td>140</td>
</tr>
<tr>
<td>Egypt</td>
<td>1</td>
<td>8,344</td>
<td>117</td>
</tr>
<tr>
<td>Equatorial Guinea</td>
<td>181</td>
<td>2,922,420</td>
<td>161</td>
</tr>
<tr>
<td>Eritrea</td>
<td>49</td>
<td>640,038</td>
<td>129</td>
</tr>
<tr>
<td>Gabon</td>
<td>1,457</td>
<td>23,840,000</td>
<td>162</td>
</tr>
<tr>
<td>Gambia</td>
<td>519.11</td>
<td>5,509,300</td>
<td>106</td>
</tr>
<tr>
<td>Ghana</td>
<td>76</td>
<td>742,925</td>
<td>97</td>
</tr>
<tr>
<td>Guinea</td>
<td>1,889</td>
<td>18,153,800</td>
<td>108</td>
</tr>
<tr>
<td>Guinea Bissao</td>
<td>2,806</td>
<td>31,712,300</td>
<td>113</td>
</tr>
<tr>
<td>Kenya</td>
<td>192</td>
<td>2,294,820</td>
<td>119</td>
</tr>
<tr>
<td>Liberia</td>
<td>189</td>
<td>2,141,860</td>
<td>113</td>
</tr>
<tr>
<td>Madagascar</td>
<td>2,059</td>
<td>24,856,900</td>
<td>121</td>
</tr>
<tr>
<td>Mauritania</td>
<td>0.4</td>
<td>4,156</td>
<td>95</td>
</tr>
<tr>
<td>Mozambique</td>
<td>3,054</td>
<td>30,974,100</td>
<td>101</td>
</tr>
<tr>
<td>Nigeria</td>
<td>8,573</td>
<td>94,788,000</td>
<td>111</td>
</tr>
<tr>
<td>Senegal</td>
<td>1,200</td>
<td>11,462,100</td>
<td>95</td>
</tr>
<tr>
<td>Sierra Leone</td>
<td>955</td>
<td>10,655,600</td>
<td>112</td>
</tr>
<tr>
<td>Somalia</td>
<td>30</td>
<td>436,907</td>
<td>143</td>
</tr>
<tr>
<td>Soudan</td>
<td>4</td>
<td>135,626</td>
<td>113</td>
</tr>
<tr>
<td>South Africa</td>
<td>12</td>
<td>40,018</td>
<td>100</td>
</tr>
<tr>
<td>Togo</td>
<td>2</td>
<td>15,861</td>
<td>78</td>
</tr>
<tr>
<td>Tanzania</td>
<td>809</td>
<td>11,037,800</td>
<td>136</td>
</tr>
<tr>
<td>Africa</td>
<td>25,960</td>
<td>301,665,553</td>
<td>116</td>
</tr>
</tbody>
</table>

Americas

Biomass Canopy Height

Simard et al., 2006
Cienaga Grande de Santa Marta, Colombia

Landsat Land Cover Classification

Mean Mangrove Tree Height

Brazil, Mexico and Costa Rica
Gulf of Fonseca Height Map

- example of a mean tree height map for the Golf of Fonseca in El Salvador, Honduras and Nicaragua
Global Map of Mangrove height and biomass

• Expand mangrove height and biomass measurements from SRTM and GLAS to the entire globe
• thanks to new global maps of mangrove cover (Giri et al 2011), improvements from ALOS/PALSAR landcover mapping and field data in South and Central America
NEW INSTRUMENT UPDATE
DBSAR Digital Beamforming SAR

- DBSAR is a polarimetric L-band (1.26 GHz) airborne imaging radar system developed at GSFC to formulate, implement and test new radar techniques.
- DBSAR combines digital beamforming, reconfigurable architecture, and real-time processing.
- Multimode operation: SAR, scatterometer, altimeter.
- Digital beamforming permits the implementation of non-conventional measurement techniques, which can overcome fundamental limitations of conventional radar systems such as:
 - increasing the measurement swath without reducing the received antenna gain,
 - synthesizing of multiple beams on both sides of the aircraft using a single nadir-looking antenna.
DBSAR’s Single Pass InSAR Measurements

- DBSAR’s digital beamforming enables the implementation of single-pass Interferometric techniques (DBInSAR).
- InSAR measurements are sensitive to the spatial variability of vertical structure parameters and can provide quantitative information on the layered structure of the vegetation, such as the depth and density.

DBSAR intensity (left) and interferometric height (right) images acquired over the Wallops Flight Facility, VA, on Sept 9, 2011
Eco3D Campaigns 2011 & 2012
Biomass and forest structure from PolInSAR

- Technique that has never been used in mangroves
- We anticipate single pass P-band data from upcoming EcoSAR instrument.

Pol-InSAR height measurements:
- Polarization is sensitive to scattering mechanisms with different interferometric scattering phase centers
EcoSAR Summary

- EcoSAR is an advanced airborne polarimetric and interferometric P-band (435 MHz) SAR instrument in development at NASA/Goddard Space Flight Center through NASA’s Earth Science Technology Office Instrument Incubator Program (IIP).

- EcoSAR will provide two- and three dimensional fine scale measurements of terrestrial ecosystem structure and biomass. These measurements directly support science requirements for the study of the carbon cycle and its relationship to climate change.

- The EcoSAR instrument will employ digital beamforming and use a reconfigurable architecture to select and adjust important parameters including number of beams, beam direction, pulse duration, and signal bandwidth (range resolution).
Total Carbon Storage in Mangroves
Above and Belowground C

NASA LCLUC Program
Marc Simard, Victor Rivera-Monroy,
Rinku Roy Chowdhury, Lola Fatoyinbo
Total Carbon Storage in ENP mangroves = 990,724,732 Mg C
(7144 Mg C/ha)
Aboveground Carbon in Standing Biomass of Mangrove forests in Everglades National Park Shark River Slough

Gulf of Mexico

Mangrove Aboveground Carbon
Mg C/ha

- 0
- 0.25 - 10
- 11 - 25
- 26 - 35
- 36 - 45
- 46 - 65

Florida Bay

0 5 10 20 Kilometers
Carbon in Roots of Mangrove Forests in Everglades National Park

- Shark River Slough
- Taylor River Slough
- Gulf of Mexico
- Florida Bay
Carbon in Soil of the Mangrove Forests in Everglades National Park

Mangrove Soil Carbon
Mg C/ha
- 0
- 607 - 613
- 614 - 618
- 619 - 625
- 626 - 638

Gulf of Mexico
Florida Bay
Total Carbon in Mangrove Forests in Everglades National Park, Florida

Mangrove Total Carbon
Mg C/ha
- 0
- 607 - 632
- 633 - 649
- 650 - 668
- 669 - 698

Gulf of Mexico
Florida Bay
Aboveground and Belowground Carbon Pools FCE-LTER
Comparison with Indo-Pacific mangroves and other forests

Above-ground live + dead
Soils 0–30 cm depth + roots
Soils below 30 cm depth

Mean Soil Depth –Estuarine: 2.82 m
-Oceanic: 1.42 m

Soil Depth to Bedrock
SRS-4: 1.85 m
SRS-5: 2.5 m
SRS-6: 4.45 m

Mangroves among the most carbon-rich forests in the tropics

Daniel C. Donato1, J. Boone Kauffman2, Daniel Murdiyarso2, Sofyan Kumalno3, Melanie Stidham4
and Markku Kanninen2
Value of Total C of ENP Mangroves

Values range from US $ 6 billion to US $ 117 billion
Conclusions

• Mangrove ecosystems are very important component in the global C cycle, because of high C storage and emissions
• We can get reasonable estimates of forest structure and biomass from spaceborne instruments, but
• None of the spaceborne sensors I mentioned are operational! (SRTM-2000, GLAS-2009, PALSAR-2011)
• Producing C emission and deforestation estimates from space in these ecosystems is a challenge, but must be addressed.
Thank you!
Any questions?