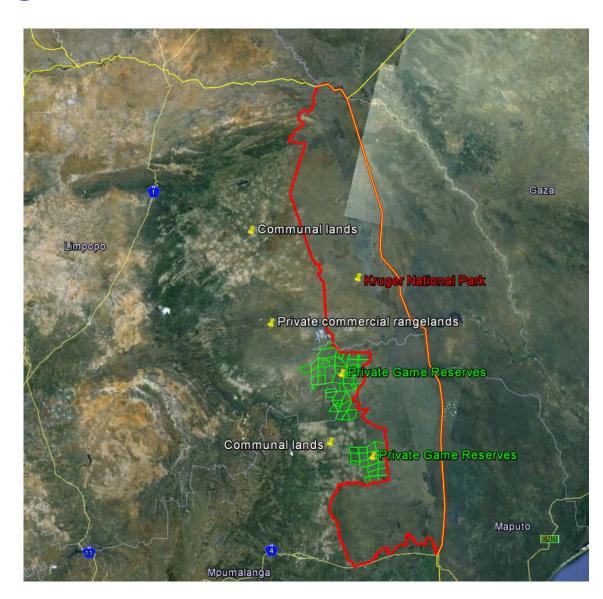
K&C Phase 3 – Brief project essentials

Assessing woody structural properties of semi-arid African savannahs from multi-temporal L-band ALOS PalSAR data

Renaud Mathieu, Laven Naidoo, Konrad Wessels, Greg Asner


Council for Scientific and Industrial Research, South Africa Carnegie Institute for Science, USA

Project area: Greater Kruger National Park, South Africa

- Woodlands and savannahs
- Ca. 60000 km²
- 10-50% woody cover
- < 60 woody T/ha biomass
- Dominant land uses: private & public conservation areas, private rangelands (beef production), communal rangelands (subsistence use)
- Issues: biodiversity conservation, energy security (fuel wood and woodland thinning), bush encroachment

Project objectives and schedule

- Primary objective: assess and develop methods to predict woody cover and biomass in southern African woodlands and savannahs using Lband ALOS PalSAR data
- Secondary objectives:
 - Investigate full polarimetric ALOS PalSAR imagery and polarimetric decompositions to improve on woody cover and biomass predictions
 - Investigate the potential of combining multiple SAR frequencies (L-band ALOS PalSAR, C-band Radarsat-2, X-band TerraSAR-X) to improve on predictions
 - Change detection of woody cover for complete Kruger National Park using ALOS PalSAR (2008-2010) and JERS-1 / Landsat (2000)

Project objectives and schedule (cont)

- Support of the K&C thematic drivers (Carbon cycle science, International Conventions, Environmental Conservation)
 - Develop methods or parameterized algorithms suitable to African open forests for prediction of woody cover and biomass
 - Assess and reduce uncertainties
 - Above ground biomass & carbon assessment (REDD+, MRV)
 - Monitoring forest (changes): land clearing, degradation, bush encroachment
 - UNFCCC, Kyoto Protocol

Project objectives and schedule (cont)

- List the project milestones
 - Milestone 1 (11/2012): field & airborne LiDAR campaign
 - Milestone 2 (12/2012): LiDAR data processing
 - Milestone 3 (04/2013): SAR data acquisition, and SAR processing chains (including training and script development, i.e GAMMA)
 - Milestone 4 (09/2013): Assessment of multifrequency SAR for woody and biomass prediction
 - Milestone 5 (12/2013): Assessment of dual and full polarimetric ALOS PalSAR for woody and biomass prediction
 - Milestone 6 (02/2004): 2000 2010 change analysis over Kruger National Park

Support to JAXA's global forest mapping effort

- Support to JAXA's global forest mapping effort
 - Develop methods or parameterized algorithms suitable to mapping African open forests
 - Local / regional maps can be used for validation of global maps
- List ground truth data that will be shared with JAXA
 - Georeferenced estimates of tree cover (classes with 20% increment)
 - Data extracted from field work and classification of very high resolution satellite imagery
 - Locations: woodlands and savannahs (Limpopo and Mpumalanga provinces);
 coastal forests and plantations (KwaZulu-Natal province)

Deliverables

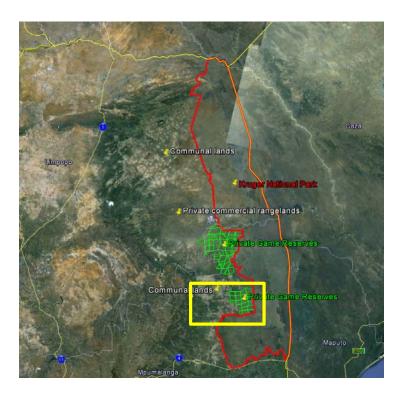
- Planned outputs of the project:
 - Woody cover and biomass maps in the South African Lowveld
 - Woody cover change maps for the Kruger National Park
 - Woody cover ground truth plots
 - Final report: Mapping woody cover and biomass in South African savannahs and woodlands using ALOS PalSAR
 - Presentation: K&C meeting, 1 local conference, 1 international conference (in 2014)
 - Peer-reviewed publication: 1 (in 2014)

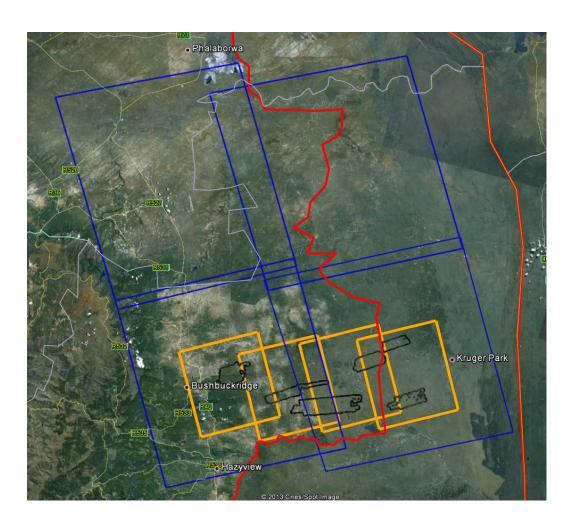
Overall context

- Savannahs and woodlands: mixed grass and woody layer
- Worldwide, one sixth of the land surface; 3rd carbon pool after tropical and temperate forest
- Key biome in Africa and southern Africa
 - Forests covers 37.1% in South Africa: 42 m ha (35%) of woodlands & savannahs, 1.2 m ha (1.1%) of plantations, 0. 5 m ha (0.5%) of indigenous forests

Specificities of savannahs and woodlands in southern Africa

- Arid / semi-arid: low range of biomass (<60 t/ha)
- Mostly gradual changes: logging, encroachment
- Fine scale heterogeneity = remote sensing challenge
 - Woody plant size & cover (3-6 m, 10-40%)
 - Soil properties & water availability
 - Disturbance factors: fire, herbivore, human
- Woody plant: multi-stemmed clumps, high biomass in branches rather than in main stem
- Importance in local and regional context:
 - Food (open woodland for cattle grazing) / energy security (fuel wood) → poor communities
 - Climate change / carbon accounting (REDD+)
 - Climate modeling / vegetation dynamic (grass vs. woody)

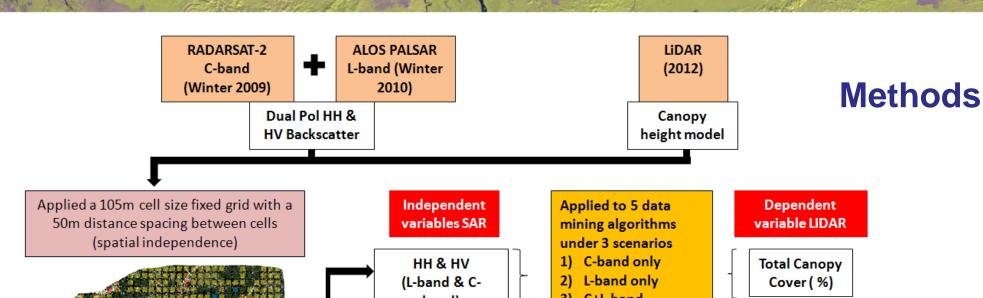



Objective: initial results

- Objective: Assess the relative performance of L-band, C-band, and combined L-band / C-band for prediction woody cover in semi-arid savannahs in South Africa
- Hypothesis: Combination of L-band and C-band will provide the best performance, because of the capacity of L-band to detect large woody features and C-band small woody features; this mix being prevalent in these environments where big trees mixed with dense shrub cover

Study area / dataset

Focus on selected land use transect (yellow, conservation, communal rangelands) for methodological research as a large dataset is available (Radarsat, TerraSAR, PALSAR); PalSAR to be used to upscale over the whole Kruger park and surroundings


Blue = PALSAR tracks, Orange = Radarsat tracks, Black = LiDAR tracks

Study area / dataset

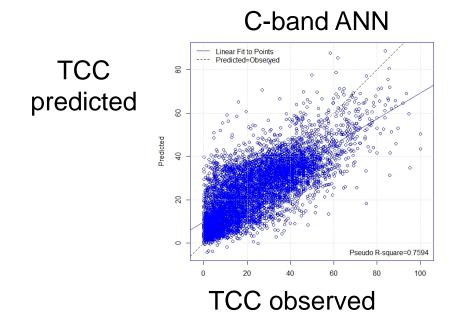
			Spatial		Acquisition			
Image ID	Sensor	Mode	Resolution	Incidence angle	time	Season		
FQ15		Quad Polarized		34.4 - 36.0°	13/08/2009			
FQ20	RADARSAT-2	(HH, HV, VH,	Γm	39.3 - 40.1°	06/08/2009	Winter 2009		
FQ13	C-band	VV) but HH and	5m	32.4 - 34.0°	06/09/2009			
FQ18		HV only used		37.4 - 38.9°	30/08/2009			
ALPSRP242696680	ALOS PALSAR L-	Dual Polarized (HH & HV)	12.5m	34.3°	14/08/2010	Winton 2010		
ALPSRP242696690					14/08/2010			
ALPSRP245176680					31/08/2010	Winter 2010		
ALPSRP245176690	band				31/08/2010			
		Discrete			1/04/2012-	End summer		
	CAO LIDAR	Footprint	1.1m	Nadir	24/05/2012	2012		

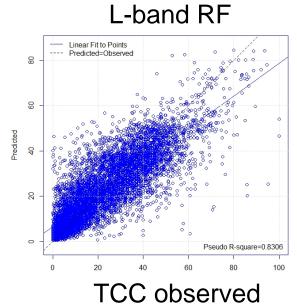
K&C Initiative An international science collaboration led by JAXA

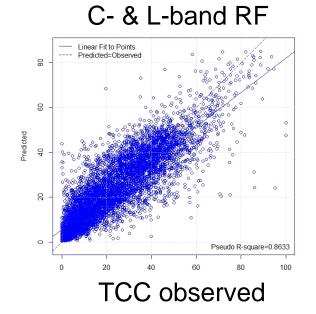
Extract mean values from the 105m grid

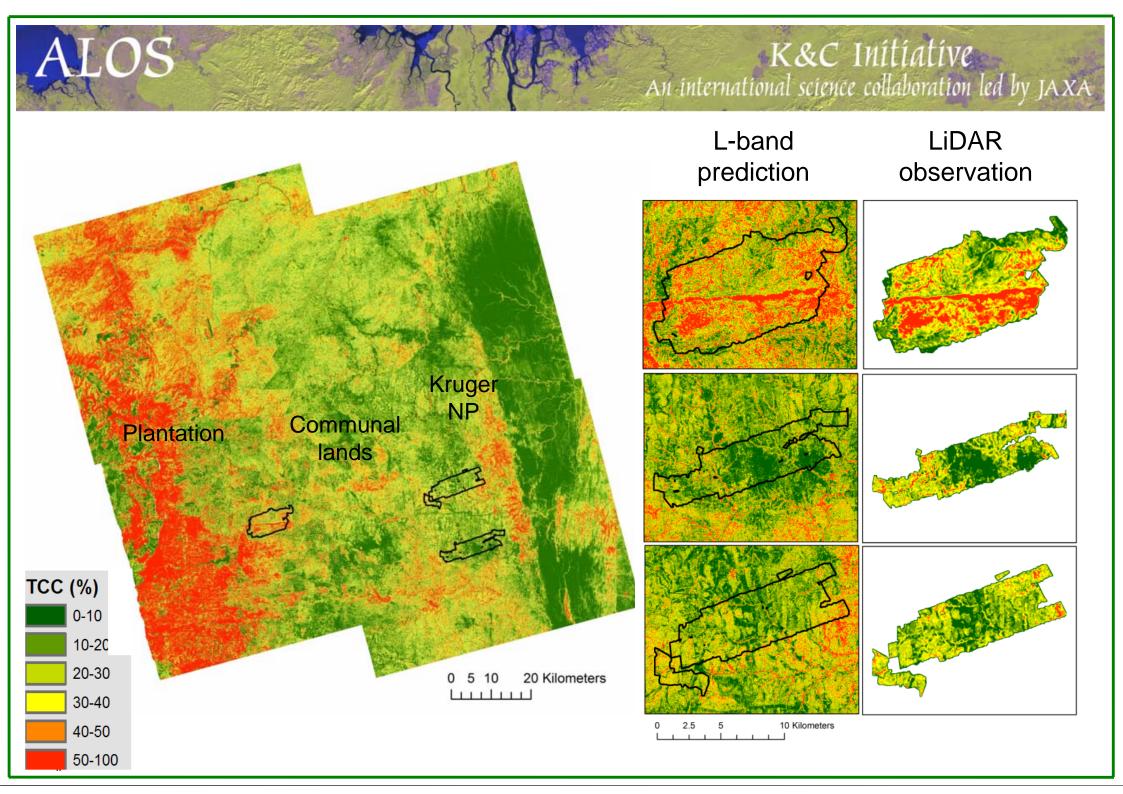
cell ROIs

Radarsat-2 + ALOS PALSAR + LiDAR integrated variable dataset (at 105m cell size)


band)


3) C+L-band


Algorithm	Algorithm type	Algorithm Description			
Linear	IParametric & linear	Utilises linear regression for prediction. and is			
Regression		able to deal with weighted instances.			
SMO Regression	Non-parametric & non- linear	Implements a support vector machine for regression.			
Decision Tree	INon-narametric & non-	Uses a recursive partitioning approach to split data into 'branches' of common parameter attributes			
Artificial Neural Network	INon-parametric & non-	Utilises multiple layers of neurons connected to each other which feed the data through the network			
Random Forest	Non-parametric & non-	Utilises an ensemble of un-pruned decision trees which votes on the best decision tree design based on plurality			


Results

C-, L- and C+L Band TCC (%) Modelling Results [35% Training; 65% Validation]									
Algorithm	Algorithm tuno	C-band only		L-band only		C+L band			
Algorithm	Algorithm type	R ²	RMSE	R ²	RMSE	R ²	RMSE		
Linear Regression	Parametric & linear	0.72	12.42	0.81	10.36	0.83	9.91		
SMO Regression	Non-parametric & non-linear	0.72	12.61	0.82	10.61	0.83	10.05		
Decision Tree	Non-parametric & non-linear	0.73	12.09	0.82	10.18	0.83	10		
ANN	Non-parametric & non-linear	0.76	11.55	0.83	9.96	0.83	9.91		
Random Forest	Non-parametric & non-linear	0.75	11.82	0.83	9.89	0.86	8.96		

Next steps

- Integration of TerraSAR-X coverage
- Analysis of errors (spatial patterns, contribution of single SAR frequency)
- Extend 2010 L-band prediction to complete Kruger Park and change detection using earlier map produced with JERS-1 / Landsat (2000)
- Assess multi-temporal and fully polarimetric ALOS-PalSAR dataset

K&C Initiative An international science collaboration led by JAXA

Thank you!

Acknowledgement:

Data: Carnegie Institute of Science, JAXA

Funding: EU FP7 AGRICAB, SA Department of

Science and Technology

