サンゴ礁における底質環境観測 への活用可能性について

陸域観測技術衛星ALOSデータ利用シンポジウム2003 2003年2月20日 東京国際フォーラム

(財) 亜熱帯総合研究所 池間健晴 宇宙開発事業団 森山隆、萩原明早香、冨井 直弥 国立環境研究所 松永恒雄、山野博哉

1.サンゴ礁研究の背景 (1)高い生物多様性 (2)白化現象 (3)どこを保全するか (4)NASDAとの共同研究

2.サンゴ礁リモートセンシング研究 (1)解析原理 (2)LANDSAT/TMの解析 (3)シミュレーション (4)まとめ

1. サンゴ礁研究の背景

(1)高い生物多様性

世界で最も多くのサンゴの種類が生息

Science, 2002 February 15, vol.295, pp.1280-1284 Marine Biodiversity Hotspots and Conservation Priorities for Tropical Reefs, Callum M. et al.

(2) 白化現象

1998年世界規模の白化現象

1998年9月12日

1. サンゴ礁研究の背景

(3) どこを保全するか

沖縄本島周辺のサンゴ礁を保全しなくてはならない地域は? - サンゴの供給源の調査研究(東京工業大学 灘岡ら)-

サンゴの産卵時期(5~7月)の海面 表層の流れをHFレーダにより観測 (2001年6月9日午前8時)

サンゴ産卵翌日から漂流ブイを投入し、 数日間その軌跡を観測

1. サンゴ礁研究の背景(4)NASDAとの共同研究

NASDAとの共同研究

2000(平成12)年~2002(平成14)年

「地球観測衛星データを利用した沖 縄県周域におけるサンゴ礁モニタリ ングのための手法開発及び利用実 証に関する研究」

 (1)現地調査によるサンゴのスペクト ル調査
 (2)LANDSAT/TMデータ、高解像度 衛星データ等の解析
 (3)航空写真、マルチスペクトルセン サによる解析

慶良間列島

等を実施

2. サンゴ礁リモートセンシング (1)解析原理

サンゴ礁リモートセンシングの概要

2. サンゴ礁リモートセンシング (1)解析原理

サンゴ礁地形模式図

2. サンゴ礁リモートセンシング (1)解析原理

Lyzengaの式

底質が同じならばバンドi、jのデジタル出力値DNi、DNjの対数値は水深に関わらず傾 きが一定になる(Lyzenga、1978)。この原理を用いて、水深の影響を除去した底質指標 として式(1)を導入する。Blijは2バンド間の反射率の比に対して水深の影響を補正した ものであり、画素内における砂の割合を示す。

BIj = log(DNi - DNdeep i) - kij log(DNj - DNdeep j)= log{(DNi - DNdeep i) / log(DNj - DNdeep j) kij} (1)

Blij:バンドi、jから導出される底質指標、DNi:バンドiのDN値 DNdeep i:バンドiの深海でのDN値、kij:バンドi、jの水中消散係数比

式(1)は、水深のパラメータを含む海底反射率の式をバンドi、jについて連立方程式を 立て、水深のパラメータを消去することから得られるものであり、したがってBlijは2バンド 間の反射率の比に対して水深の影響を補正したものである。

それぞれのDN値からオフセット値として深海でのDN値を差し引いているが、これを補 正されたDN値として扱い、以後DN値という場合はオフセット値をひいた値としてのもの である。

2. サンゴ礁リモートセンシング (1)解析原理

$\mathbf{BI} = \log\{(\mathbf{DN}_{i} - \mathbf{DN}_{deep,i}) / (\mathbf{DN}_{j} - \mathbf{DN}_{deep,j})^{kij}\}$

解析対象底質のBand i のDN値

十分深い海洋Band iのDN値

2. サンゴ礁リモートセンシング (1)解析原理

画像から水中消散係数比の導出 $K_{12} \quad \log(DN_{1*}) \quad \log(DN_{2*})$ 均一な底質(砂地)

2.サンゴ礁リモートセンシング (2)LANDSAT/TMの解析

2000/10/1 Landsat7 / ETM

1998/9/18 Landsat5 / TM 1995/9/15 Landsat5 / TM

All Satellite Image Data were provided by NASDA

2.サンゴ礁リモートセンシング (2)LANDSAT/TMの解析

<u>砂地のDN値</u>

2000/10/1

1995/9/15

2.サンゴ礁リモートセンシング (2)LANDSAT/TMの解析

水中消散係数比

k ₁₂	2000/10/1	1998/9/18	1995/9/15
	(Correlation)	(Correlation)	(Correlation)
阿波連	0.640	0.787	0.639
	(0.900)	(0.968)	(0.829)
阿護	N/A	0.737	0.734
	(cloud)	(0.829)	(0.880)

Ref.: 石垣島 k₁₂ 0.746, 石西礁湖 k₁₂ 0.45

2. サンゴ礁リモートセンシング (2) LANDSAT/TMの解析

砂地と生物群集の底質の決定

砂地のDN値 2000/10/1 Mean = 1.582, SD = 0.101

1998/9/18Mean = 2.106, SD = 0.061

1998/9/18 Mean = 1.615, SD = 0.067

2.サンゴ礁リモートセンシング (2)LANDSAT/TMの解析

解析結果

2000/10/1

1998/9/18

1995/9/15

Histogram

2000/10/1

1998/9/18

Coral/ Algae/ Sea grass/ etc.

2000/10/1

1998/9/18

1995/9/15

Coral/ Algae/ Sea grass/ etc.

2.サンゴ礁リモートセンシング (2)LANDSAT/TMの解析

まとめ

砂地とサンゴを含む生物群集底質の分類は可能である。
 サンゴと藻類等の分類は困難である。
 慶良間において底質解析が可能な水深はおよそ7mである。

2. サンゴ礁リモートセンシング (3)シミュレーション

空間分解能:高 波長分解能:低

> 空間分解能:中 波長分解能:高

> 空間分解能:低 波長分解能:低

2. サンゴ礁リモートセンシング (3)シミュレーション

First Differentiation of Simulated Reflectance

2. サンゴ礁リモートセンシング (3)シミュレーション

航空機からのスペクトル測定

機体の床面にある開口部

デジタルビデオカメラ2台と分光計(Field Spec FR:ビデオカメラとの切り替え装置付き)1 台を開口部に設置した。ビデオカメラのうち1台(A)はそのまま鉛直下方を常時撮影し、 もう1台(B)は可視近赤外分光計視野切替装置に接続、分光計の視野と同じ範囲を数回 撮影する。2台のビデオカメラの画像の比較により、可視近赤外分光計の実際の視野を 推定。

ビデオカメラA、Bの比較と分光計の視野。傾いている画像がビデオB。 ビデオカメラA画像において、半径209画素(65m)の円内であることが 分かる。

図8 航空機分光計反射率計算値(2002/3/23 阿嘉島ニシハマ沿岸沿い)

航空機による画像、TM画像とシミュレーション値

測線 6 における航空機ビデオ画像	ビデオ画像円形内の LANDSAT/TM 画像	TM 画像の平均 DN 値			
(2002 年 3 月 23 日撮影) 	(2001年7月16日取得)	band1 band2 band3			
130m		スペクトル番号:10			
N	90m N	深いサンゴ大型パッチ			
<c></c>		18.89 10.11 2.22			
		スペクトル番号:22 やや深いサンゴ大型パッチ			
<d></d>		26.22 38.78 2.00			
		スペクトル番号:24			
and the second		低領の冲側 			
< E >		42.11 56.33 34.11			
		スペクトル番号:46			
		岸近くのサンゴ			
<f></f>		49.11 43.56 7.89			
		スペクトル番号:48			
		浅い砂 90%			
<g></g>		38.22 23.89 1.22			
		スペクトル番号:54			
		やや深い砂 90%			
<#>		19.78 11.00 0.56			
		 スペクトル番号:59			
		やや深い砂 40%			

2. サンゴ礁リモートセンシング (3)シミュレーション

結果 - LANDSAT/TM

シミュレーション冬世

底質が均一、大気補正後のLANDSAT/TMのDN値(シミュレーション結果)

センサの条件		Hea1thy coral				Dead cora1		Sand		
センサ LANDSAT/TM band1~3	Depth[m]	band1	band2	band3	band1	band2	band3	band1	band2	band3
太陽天頂角 30度	1	34	20	17	37	22	18	75	49	37
	3	31	16	12	34	18	12	61	34	16
	5	30	14	11	32	15	11	51	26	12
大気の条件	10	27	12	11	28	12	11	37	16	11
大気タイプ 中緯度夏の標準大気	20	25	11	11	25	11	11	27	12	11
エアロゾルタイプ 海										
海面の条件		底	質か不均・	一、大気袝	甫正後のLANI	DSAT/TM	IのDN値(:	シミュレー	ション結果	:)
高度 Om		Hea	althy cora	1 25%, 8	Sand 75%	Н	lea1thy c	ora1 50%	, Sand 50)%
海上風 0 m/sec	Depth[m]		band1	band2	band3		b	and1 b	and2 ba	und3
底質 % %	1		65	42	32		4	54 35	5 27	
生サンゴ 25 50	3		54	30	15		2	46 25	5 14	
藻類に覆われた死サンゴ 75 50	5		46	23	12		4	40 20) 12	
	10		35	15	11		3	32 14	11	
变数	20		27	12	11		2	26 11	11	
水深[m] 1, 3, 5, 10, 20										
底質 生サンゴ、藻類に覆われた		Heal	lthycora1	25%, De	ead coral 759	%	Healthy	coral 50)%, Dead	coral 50%
<u> </u>	Depth[m]	band	l band2	2 band3		b	and1 ba	and2 ba	nd3
海水の条件	1		36	21	17			36 2	21 17	
	3		33	17	12			33 1	.7 12	
クロロフィル量 0.5mg/m ³	5		31	15	11			31 1	5 11	
	10		28	12	11			27 1	2 11	
	20		25	11	11			25 1	1 11	

2. サンゴ礁リモートセンシング (3)シミュレーション

結果 - ALOS/AVNIR2 -

底質が均一、大気補正後のALOS/AVNIR2の輝度値(シミュレーション結果) 単位:Wm⁻²sr⁻¹µm⁻¹

	Hea1thy coral			Dead cora1			Sand		
Depth[m]	band1	band2	band3	band1	band2	band3	band1	band2	band3
1	27.5	30.4	20.5	30.6	33.4	21.3	59.3	75.7	45.3
3	25.8	25.2	14.6	28.1	27.1	14.7	48.9	52.7	19.2
5	24.6	22.1	13.4	26.3	23.4	13.4	41.5	39.9	14.4
10	22.6	18.6	13.0	23.4	19.1	13.0	30.6	25.1	13.1
20	21.3	16.9	13.0	21.5	17.0	13.0	23.1	17.9	13.0

底質か不均一、大気補正後のALOS/AVNIR2の輝度値(シミュレーション結果) 単位: Wm⁻²sr⁻¹µm⁻¹

	Hea1thy cora1 25%, Sand 75%			Healthy coral 50%, Sand 50%			
Depth[m]	band1	band2	band3	band1	band2	band3	
1	51.4	64.4	34.7	43.4	53.1	29.2	
3	43.1	45.8	16.0	37.3	38.9	15.0	
5	37.2	35.4	12.5	33.0	31.0	12.3	
10	28.6	23.5	11.6	26.6	21.8	11.6	
20	22.6	17.7	11.6	22.2	17.4	11.6	

マルチスペクトルセンサCASIによる航空機観測

2. サンゴ礁リモートセンシング (4)まとめ

サンゴと藻類等の分類は衛星データでは困難であるが、 CASIでは生サンゴ、藻類に覆われた死サンゴの区別 は可能であることが示唆された。

慶良間において底質解析が可能な水深はおよそ7mで ある。シミュレーションでは10m。

ALOS/AVNIR2の空間解像度はLANDSAT/TMより高い分類精度が期待できる。