Overview of the ALOS Satellite System

Presented to The Symposium for ALOS Data Application Users
Kogakuin University, Tokyo, Japan

Mar. 27, 2001
Takashi Hamazaki
Senior Engineer
ALOS Project
National Space Development Agency of Japan (NASDA)

Agenda

- ALOS Mission Objectives
- ALOS Satellite System and Development Schedule
- ALOS Key Technology Development
- Conclusion
ALOS Mission Objectives

- Land Observation Technology Development
- Contribution to the following fields of applications
 - **Cartography**
 - 1/25,000 scale map, 3 to 5m accuracy Digital Elevation Model (DEM)
 - High resolution (2.5m) and wide swath width (35 or 70km)
 - Mapping without any Ground Control Points
 - **Regional Environmental Monitoring**
 - Multi-Spectral & Multi-Polarization Observation
 - Same Area/ Simultaneous Observation with Optics & SAR
 - Wide Swath Width and Frequent Observation (Seasonal Changes)
 - **Disaster Monitoring**
 - Observation within 48 hours (on the equator) or 24 hours (at 60deg latitude)
 - **Earth Resources Survey**
 - JERS-1 Successor

ALOS Satellite System

- Launch Date: June 2003
- Launch Vehicle: H-IIA
- Spacecraft Mass: 4,000kg
- Generated Power: 7kW
- Orbit: 691.65km
- Sun Synchronous
- Repeat Cycle (Sub-Cycle): 46 days (2 days)

PRISM AVNIR-2
- Panchromatic Remote Sensing Instruments for Stereo Mapping
- Advanced Visible and Near Infrared Radiometer type 2

PALSAR
- Phased Array type L-band Synthetic Aperture Radar

© T.Hamazaki Mar. 2001
ALOS Development Schedule

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase-A</td>
<td></td>
</tr>
<tr>
<td>Preliminary Design</td>
<td></td>
</tr>
<tr>
<td>Basic Design</td>
<td></td>
</tr>
<tr>
<td>Detailed Design</td>
<td></td>
</tr>
<tr>
<td>Sustaining Design</td>
<td></td>
</tr>
<tr>
<td>Phase-B</td>
<td></td>
</tr>
<tr>
<td>Conceptual Study</td>
<td></td>
</tr>
<tr>
<td>Phase-C&D</td>
<td></td>
</tr>
<tr>
<td>'a'a'l</td>
<td></td>
</tr>
<tr>
<td>'d'l,'l's'lC's's'l</td>
<td></td>
</tr>
<tr>
<td>'o'e'l</td>
<td></td>
</tr>
<tr>
<td>2003/6</td>
<td></td>
</tr>
</tbody>
</table>

ALOS Development Schedule

BBM: Bread Board Model
EM: Engineering Model
MTM: Mechanical Test Model
TTM: Thermal Test Model
PFM: Proto Flight Model

ALOS Mechanical Test Model (MTM)

© T.Hamazaki Mar.2001
ALOS Thermal Test Model (TTM)

Mapping Requirements

1) Providing 3 to 5m altitude accuracy Digital Elevation Model.
 a) 2.5m resolution panchromatic image.
 b) Triplet stereoscopic images with nadir, forward, and backward sensors.
 c) Base to Height ratio between forward and backward sensor is equal to 1.0.

2) Providing "Mapping without any Ground Control Points" capability.
 d) Exact satellite position information within 2.5m accuracy.
 e) Exact satellite attitude information within 0.0002-degree accuracy.
 f) Absolute time information for each pixel within 0.00037sec accuracy.

3) Providing "Distortion free image".
 g) Long term attitude stability within 0.0002deg/5sec.

Requirement 1), 2), and 3);
 h) Minimizing thermal distortion during orbital period (100minutes)
 * Among Sensor's optic axes.
 * Between Sensor's optic axis and attitude sensors.
(1) High Resolution Optics
 - High Resolution (2.5m) & Wide Swath Width (35 or 70km)
 - Triplet Stereo Optics (Base to Height ratio=1.0)
(2) L-band Synthetic Aperture Radar (SAR)
 - Variable Off-Nadir angle, Full polarimetry
 - Active Phased Array Antenna
(3) High Speed Mission Data Handling System
 - Over 1Gbps data handling, via Data Relay Satellites
(4) Precise Position and Attitude Determination System
 - Mapping without any Ground Control Points
(5) Highly Stable Attitude Control System
 - Distortion Free Image
(6) Low Thermal Distortion Structure

High Speed Mission Data Handling System

Input: max280Mbps & 2ch
Total data rate restrictions
420Mbps

Output: max280Mbps & 1ch

MDC: Mission Data Coding System
MDR: Mission Data Recorder
DC1: Lossy Data Compression
DC2: Lossless Data Compression
RS: Reed Solomon Encoder

© T.Hamazaki Mar.2001
High Speed Mission Data Handling System

- Over 1Gbps On-Board Data Handling
- High Speed Real Time Data Compression
 - 960Mbps → 240Mbps
- Solid State Mission Data Recorder
 - Speed: 420Mbps, Capacity: 768Gbits
- Reed Solomon Error Correction Coding
 - Bit Error Rate < 10^{-16}
- CCSDS (Consultative Committee for Space Data Systems) Format
- Data Relay Satellite
 - 280Mbps @ DRTS-W/-E, 140Mbps @ ARTEMIS

Mission Data Transmission

- Data Relay Satellite
 - Primary path for ALOS mission data transmission
 - DRTS-W (2002), DRTS-E (TBD)
 - 280Mbps → 1ch (Ka band)
 - TT&C (S band)
 - Receiving Stations: Tsukuba and Hatoyama.
 - Sharing with ADEOS-II and JEM
 - ESA/ARTEMIS available, TDRS Next compatible.

- Direct Transmission
 - Secondary path for ALOS mission data transmission
 - 140Mbps → 1ch (X band)
 - Receiving Station: Hatoyama and foreign ALOS data node stations (under negotiation).
Precise Position and Attitude Determination System

- Crucial for “Mapping without any Ground Control Points”
- Dual Frequency Carrier Phase Tracking type GPS Receiver
 - Position Accuracy 0.2~1.0m
- High Accuracy Star Trackers
 - Attitude Accuracy 0.0002 degree (2.5m nadir point uncertainty)
- Absolute Time Clock
 - Synchronized to GPS absolute time and UTC.
 - Accuracy 0.0000004sec (4µsec) to GPS absolute time.
 - No drifts and No calibration necessary.

Highly Stable Attitude Control System

- Crucial for “Distortion Free Image”
- ALOS attitude stability
 - 0.0002 degree per 5sec.
 - Corresponds to 2.5m or one pixel distortion within 35km square scene.
- Attitude Disturbance from major vibration sources;
 - Data relay communication antenna pointing mechanics.
 - AVNIR-2 pointing mirror drive mechanics.
 - Solar array drive mechanics.
 - PALSAR antenna structural vibration.
- Required Technology
 - Feed-forward technique
 - On-board parameter tuning.
 - Solar Array Random Rotation
Low Thermal Distortion Structure

- Integrated Optical Bench Concept
- Thermally Insulated Truss-type Primary Structure
- Negative Thermal Expansion CFRP Truss
 - Cancellation of Metal Fitting’s positive Thermal Expansion

Optical Bench Concept

- Entire Optical Bench (include PRISM) is covered with thermal insulator.
- Inside temperature is controlled within ±0.5 deg Celsius.
- Star Tracker & Inertial Reference Unit is also attached on the Optical Bench.
Conclusion

- ALOS Development Status:
 - In the Final Stage of Technology Development.
 - Ready for System Critical Design Review and PFM Assembly.
- “Well-Balanced” and “Well-Integrated” Earth Observation Satellite System.
 - “Sensor’s Performance is Important but not Everything.”
- Close Communication/Interaction with User Community.
 - Flexible Operation and Minimum Operational Restrictions.
 - “Mapping without any Ground Control Points” capability
- User Community’s Strong Support and More Involvement is Crucial for Mission Success.