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Abstract— Deforestation in the Sumatran province of Riau is 
found to cause an initial marked increase in HH backscatter. 
Large areas can therefore be rapidly surveyed for evidence of 
deforestation by measuring temporal variability in a time-series 
of ScanSAR data. Regions of anomalous change can then be 
subjected to temporal analysis to find the timing of deforestation 
events to within 46 days. Algorithms to perform these operations 
automatically have been implemented and are currently being 
assessed and refined using field data. Comparable results for 
annual change are also achievable using Fine Beam Dual (FBD) 
data, but this involves more substantial data handling and cannot 
localise the time of deforestation. Though the analysis has been 
developed only over Riau, it is expected to be generic and 
transferable, and will be tested in other regions once suitable 
data are acquired, with the intention of extending it to the whole 
of Indonesia. 

Index Terms— ALOS PALSAR, K&C Initiative, change 
detection, ScanSAR, tropical deforestation 

I. INTRODUCTION 

A. Project objectives 

The objectives of this project are: 
 
1. To demonstrate that ALOS ScanSAR and FBD data 
can successfully detect natural forest cover change in 
Indonesia, where cloud and haze hamper natural forest 
monitoring based on optical remote sensing data. 
2. To assess the ability of ALOS data to detect key 
natural forest and land cover types in Indonesia. 
3. To develop software that permits ALOS-based forest 
monitoring to be carried out in a scientifically robust manner 
at technician level. 
4. To provide the Indonesian and global community 
with tools for using ALOS-PALSAR data that allow 
transparent, accurate and frequent tracking of natural forest 
cover change independently of cloud and haze and that can be 
used as a basis for action on biodiversity conservation, forest 
carbon management, etc. 
 
Up to now, work has been directed primarily toward the first 
and third objectives, with particular emphasis on the analysis 

of ScanSAR time series.  The analysis this involves also 
contributes to meeting the second objective.  Our immediate 
aim is to be able to detect all new deforestation occurring from 
the start of the ALOS time-series so that it can be reported on 
at 46 day intervals, and the current drive is focussed on 
developing the machinery needed to achieve this goal. 
 
Up to now, we have carried out a case study applied to a single 
time-series of ScanSAR data for the year 2007, in order to 
develop methods that highlight regions showing evidence of 
deforestation and track the progress of these events. These 
methods should be able to analyse a year’s ScanSAR images 
for a single scene within 12 hours. A more rapid but 
approximate analysis should be achievable within an hour.   
 

B. Scientific findings 

Analysis of PALSAR data seems to indicate that multi-
temporal ScanSAR data is as capable of measuring 
deforestation as Fine Beam Dual (FBD) data. This provides 
major advantages, particularly coverage of wider areas and the 
ability to locate the timing of deforestation events to within 46 
days. Deforestation in Riau (the test area) typically leads to an 
increase in HH backscatter, but at the moment we have no 
datasets long enough to know how the signal subsequently 
develops over longer periods. Evidence from Brazil (backed 
up by physical argument) suggests that the signal will decline 
with time to values well below that of mature forest. The 
characteristic signal of a deforestation event indicates that 
large areas can be rapidly surveyed for evidence of 
deforestation by measuring temporal variability in a time-
series of ScanSAR data. Detected regions of change can then 
be subjected to temporal analysis to find the actual timing of 
the event. These operations can be realised by automatic 
algorithms which have been implemented and are currently 
being tested. Up to now, the analysis has been developed only 
over Riau, but we expect it to be generic and transferable, and 
it will be tested elsewhere once suitable data are acquired, 
with the intention of extending it to the whole of Indonesia. 



II. DESCRIPTION OF THE PROJECT 

A. Relevance to the K&C drivers 

The project was designed to gain better understanding of the 
land carbon cycle, and in doing so derive information relevant 
to UNFCCC reporting under Land Use, Land Use Change and 
Forestry. Its original focus was meant to be temperate forest, 
but this was modified for three reasons: (1) the greater 
importance of tropical land use change for the global carbon 
budget; (2) the proposal for the post-2012 Reduction of 
Emissions from Deforestation and Degradation mechanism at 
the Bali COP-12; (3) development of good working links 
between the University of Sheffield and WWF Indonesia, 
which gives a means to link technical developments to ground 
data, provides access to important institutional links in 
Indonesia, and supports applications on the ground.  
The key initial aim of the project was to develop methodology 
to map changes in forest cover using ALOS PALSAR data. 
The expectation was that multi-temporal (annual) FBD data 
would be crucial for this, but investigations at the Riau test 
site in Sumatra suggest that equivalent, and in fact more 
powerful, results may be obtained using 46-day repeat 
ScanSAR data. We also aimed to develop methods to estimate 
product accuracy, and thence to generate maps of forest cover 
and maps of forest changes, together with corresponding 
accuracy assessments. Substantial progress has been made in 
developing methods to detect deforestation and locating the 
times of these changes. We are currently planning work in 
Sumatra to test the performance of the algorithms and 
optimize the parameters used in them. We then intend, with 
the help of JAXA, to extend the methods to the whole of 
Indonesia. 

B. Work approach 

The work has benefited greatly from access to the WWF 2007 
land-cover database for Riau & Jambi [1].  This provides 
detailed information about vegetation types covering the 
region and is based on remote sensing data nominally for 
2007.  We also have ALOS ScanSAR and Fine Beam Dual 
images for much of the same region spanning the same year. 
With the help of the WWF database we can identify primary 
forest regions and assess their normal characteristics. It also 
allows us to reduce the processing task, since for deforestation 
studies we can ignore areas already known to have other types 
of land cover. This is very helpful, since a single ScanSAR 
image typically contains ~19×106 pixels, and a long time-
series of images represents a significant amount of data 
processing. The approach we have developed is to detect 
anomalous changes in regions labelled as forest; these are 
likely to indicate deforestation events. Subsequent operations 
aim test this hypothesis and determine when the changes 
occurred. The wider challenge is to extend the methods to 
regions outside the database where there may be less prior 
knowledge about forest cover. 
 
Temporal variability within a time-series of images can be 
charted by recording the temporal standard deviation at each 

pixel.  Seasonal fluctuations together with slow changes over 
the period of the time-series may contribute to this, hence to 
detect deforestation we need a more specific temporal 
signature. Initial searches used colour-coded combinations of 
images in conjunction with the WWF land-cover database to 
survey the type of changes that occur and to identify suspect 
regions within designated primary forest areas for more 
detailed study.  
 
Each pixel of a ScanSAR image covers a region of size 
100m × 100m and we have made the assumption that under 
deforestation enough of each pixel is cleared within the 46-day 
cycle to change significantly the scattering coefficient between 
successive images in the time-series, thus generating a step in 
the intensity (more subtle effects due to partial clearance or 
forest degradation will be studied later).  In practice the 
algorithms use a window to average over squares of 5×5 
pixels and we are thus currently working at a spatial resolution 
of 500m × 500m per cycle. 
 
A preliminary routine (changemap) distinguishes positive 
from negative changes that exceed a threshold value.  Areas of 
positive change are picked out as regions of suspected 
deforestation.  This increase is thought to be due to the 
practice of leaving tree stumps and other detritus behind after 
felling.  The stumps in particular would lead to high 
backscatter due to the double bounce mechanism.  In other 
areas of the world, alternative management practices may 
instead lead to a negative change, and partly for this reason it 
is worth retaining the possibility of studying both types of 
change. 
 
A more specific routine (stepmap) fits a step function to 
window-averaged data and filters out regions of positive or 
negative step-size that exceed a given threshold value.  This 
routine picks out many areas in common with changemap and 
some that are different.   It also produces extra valuable data 
on the time of step.  However it is relatively slow, taking about 
16 × the CPU time of changemap.  A third routine (noisemap) 
has also been developed to look more generally at regions of 
anomalous behaviour, particularly with a view to isolating 
regions that might lead to false detections.  This routine is 
relatively fast and may be used to initially screen large areas 
for possible regions of interest. Inside the WWF database 
region it is possible to focus only on known forest areas, but in 
regions without prior knowledge of land cover a means of 
locating regions of interest will be needed.  Using noisemap, 
pixels that do not include any period of scattering that exceeds 
the normal standard deviation can be identified and ignored, 
allowing use of the relatively slow stepmap to focus only on 
the remaining areas.   
 

C. Satellite and ground  data 

In the initial phase of program development we have 
concentrated on a set of eight ScanSAR images centred on 
Lat. 1.728 S, Long. 102.332 E  that partially overlap the WWF 



land-cover database for Riau [1].  This is the complete set of 
46-day ScanSAR images for 2007, and they are all acquired 
with the same geometry. Using such a limited dataset was 
necessary because data quota limitations prevented more 
extensive coverage. However, it has been sufficient for 
developing methods that should have much wider 
applicability. 
 
In addition, we have nearly full coverage of Riau by FBD data 
from June to August 2007; a missing strip had to be filled with 
November data. 
 
Before analysis the eight ScanSAR images were accurately 
co-referenced using Gamma software. A multi-channel filter 
[2] was then applied to remove speckle.   The IDL code for 
this procedure has been structured to work automatically with 
a large number of images and delivers de-speckled files of the 
same name with modified extensions.  The routine also finds 
the combined intersection areas of all input files and applies to 
all results.  In other words, any regions that are not covered by 
all input files are removed.  Processing takes less than 1 hour 
for 8 images and intermediate processing files are not 
currently saved.  However, if a significantly longer time base 
is available it may be worthwhile to implement an iterative 
procedure to speed the processing of new images [3], which 
would require the archiving of some intermediate files. The 
resulting average image is shown in context with the database 
in Figure 1.   
 

Figure 1.   A de-speckled and averaged PALSAR ScanSAR image of the Riau 
and Jambi regions of Sumatra overlaid by the WWF 2007 land-cover database.  

Images obtained Jan – Dec 2007, ALOS K&C © JAXA/METI 
 

1) Regions 
From the preliminary analysis using colour-coded 
combinations of images in conjunction with the WWF land-
cover database, ten regions are discussed here, as detailed in 

Table 1.  For each of these regions, the intensities of a 5×5 
window of pixels are plotted for comparison as a time-series 
in the Appendix.  Two of these (Regions 1 and 3) have all the 
hallmarks of deforestation events:  1) the intensity changes 
abruptly over a 46-day period in a region designated as forest; 
2) the regions have an angular appearance; 3) they are close to 
known cleared areas and plantations.  In addition, for region 1 
the progressive nature of the event is consistent with 
sequential forest clearance. For comparison, apparently 
undisturbed regions immediately adjacent to regions 1 and 3 
have also been investigated – these have a slow, probably 
seasonal intensity variation indistinguishable from other 
regions of primary forest.  Regions 5 – 10 have all been 
chosen because they belong to regions of relatively high 
temporal standard deviation.  These types of region could 
potentially be wrongly identified as deforestation; it is 
therefore important to know their characteristics. 
 
Table 1 Regions investigated in detail. 
 Latitude 

South 
Longitude 
East 

 

Region 1 0◦ 34’ 36.13’’ 102◦ 20’ 39.63’’ Suspected deforestation 
Region 2 0◦ 33’ 10.18’’ 102◦ 39’ 31.80’’ Adjacent forest to region 1 
Region 3 0◦ 13’ 28.30’’ 102◦ 54’ 25.47’’ Suspected deforestation 
Region 4 0◦ 12’ 31.12’’ 102◦ 55’ 10.97’’ Adjacent forest to region 3 
Region 5 0◦ 15’ 28.30’’ 102◦ 49’ 47.49’’ A forest region with 

unusually high s.d. 
Region 6 0◦ 11’ 44.51’’ 102◦ 40’ 48.73’’ River and associated forest 
Region 7 0◦ 25’ 29.81’’ 102◦ 49’ 57.83’’ An anomalously bright 

region 
Region 8 0◦ 18’ 30.91’’ 102◦ 35’ 13.05’’ Probable flood plain 
Region 9 0◦ 18’ 30.94’’ 102◦ 33’ 39.42’’ As above 
Region 10 0◦ 42’ 36.26’’ 102◦ 58’ 44.65’’ Paddy fields 

 
The WWF database is very detailed and for the purposes of 
the current study the regions have been amalgamated into just 
nine groups as shown in Table 2.  
 
Table 2  WWF database amalgamated regions 
Landcover Fill 
Primary Forest (all types)  
Shrub,Grass& Fern   
Regrowth (All types including Forest, Shrubs, Semak, Belukar Muda)   
Plantation (Rubber, Oil Palm, Acacia, Coconut)   
Paddy fields   
Water   
Agricultural (mixed agriculture, mixed garden)   
Cleared, cleared post acacia harvested, etc.  
Burnt   
Built   
 
All the regions given in Table 1 lie within the database.  Here, 
in Figure 2 we show the context of the two regions of main 
interest. The land-cover maps are superimposed on composite 
ScanSAR images colour-coded to reference the beginning, 
middle and end of the cycle.  In these images the regions of 
interest lie at the image centres.  Region 1 changed relatively 
late in the year (see Appendix) and appears as a bluish patch in 
Figure 2(a), region 3 changed closer to mid-cycle and appears 
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as a greenish patch in Figure 2(b). 
 

          
      (a)                                                                      (b) 
 

Figure 2  (a) A small section of a  time-averaged de-speckled PALSAR 
ScanSAR image surrounding region 3 showing texture probably associated 
with plantation drainage.  (b) A high resolution FBD image of the same area 
where the colour derives from polarisation channels shown as: HH-red, HV-

green, HH/HV-blue.  Images obtained Jan – Dec 2007, ALOS K&C © 
JAXA/METI 

 

2) Normalisation 
 
An initial view of the areas that are subject to change can 
easily be obtained from the temporal standard deviation for 
each pixel.  However, over a whole year, it is evident that the 
average backscatter of the forest regions changes significantly.  
Most of our work has therefore been carried out with images 
corrected for this (probably) seasonal variation by normalising 
intensities relative to the forest background.  Deviations 
relative to this background that lie within areas designated as 
primary forest then highlight regions of interest. By masking 
out non-forest regions these can easily be isolated and 
identified, as shown in figure 3. 

 
Figure 3. Temporal standard deviation map of areas labelled as forest in the 

WWF database that overlap with the image region.  Areas outside the forest or 
image are shown in black and the standard deviation of other regions is 

indicated by the colour-bar, with regions of highest standard deviation shown 
in white.  Images obtained Jan – Dec 2007, ALOS K&C © JAXA/METI 

 

3) Tools 
 
Three MATLAB routines have been developed and are 
described briefly below.  The routine noisemap was originally 
designed to seek anomalous areas that might confuse the step 
fitting routine.  In particular, if steps are found in data with 
overall high or low average values compared to forest they are 
unlikely to be part of the forest. Strongly fluctuating data 
might also lead to an erroneous fit.  All of these routines 
incorporate user-defined window-averaging and a detection 
threshold value, Td, expressed in units of the forest temporal 
standard deviation SDF:  
 

Fhd SDTT =                             (1) 

 
where Th is the threshold expressed as an intensity and the 
standard deviation is obtained from the fluctuations over the 
full extent of forest available in the image according to the 
WWF database.   
 
Table 3a  noisemap  
 
Inputs Meaning 
a The set of N images, i.e. time-series data 
Tnorm Forest intensity normalization data 
mask_stat Forest intensity statistics 
Td A detection threshold; see Eq. (1) 
nwin A window size for spatial averaging 
 
Outputs Output pixels are set = 0 unless the following criteria are 

met: 
hav Pixels with average intensity > mean + Th 
lav Pixels with average intensity < mean - Th  
nz Pixels with a noise metric nz >  mean + Th 
sdev Pixels with temporal standard deviation >  mean + Th 
nzmin Pixels with a temporal minimum value <  mean - Th 
nzmax Pixels with a temporal maximum value >  mean + Th 

 
The noise metric was designed to discriminate between a step 
function response and strong temporal fluctuations.  It can be 
represented as   
 

  ∑
−

=
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nz σ ,   (2) 

 

where ijkσ  is the (i, j)’th pixel of the k’th image and 

1−−=∆ ijkijkijk σσσ  is the change in intensity between images.  

It is strongly correlated with other noise measures such as the 
standard deviation, but it may have a specific use in avoiding 
false positives, as we show later. 
 
The routine changemap fits a straight line to the window-
averaged intensity time-series. The input arguments are similar 
to those for noisemap, but include an additional mask, 
represented here as M, that limits the area over which the 
calculations are performed. This may be a mask obtained from 
regions of the WWF database (particularly forest) or it may be 
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obtained from regions identified by noisemap as having, e.g., a 
significantly high standard or other deviation from the norm.   
Note that the criterion for detecting positive change (“cpos”) 
in Table 3b could equally be expressed as “pixels with a fitted 
final image intensity > Tsd,” and similarly for cneg. 
 
Table 3b changemap 
 
Inputs Meaning 
a The set of N images, i.e. time-series data 
Tnorm Forest intensity normalization data 
mask_stat Forest intensity statistics 
Tsd A threshold relative to forest standard deviation 
nwin A window size for spatial averaging 
M A mask determining a region to be analysed 
 
Outputs Output pixels are set = 0 unless the following criteria are 

met: 
cpos Pixels with positive change gradient > Th / N 
cneg Pixels with negative change gradient < - Th / N 
C1pos Pixels with fitted 1st image intensity >  mean + Th  
C1neg Pixels with fitted 1st image intensity <  mean – Th  

 
The routine stepmap fits a step function to the window-
averaged intensity time-series using the matlab routine 
fminsearch; this in turn uses a Nelder-Mead simplex algorithm 
to optimise the fit.  The routine is initialised by finding the 
time of maximum change, the initial value and the final value.  
The fit is relatively slow compared to changemap and overall 
timings for this routine are roughly 16 × those for changemap.  
Like changemap, the input arguments include a mask, M, that 
limits the area over which the calculations are performed.  In 
the absence of any prior knowledge of forest cover, it 
currently seems as though this mask can best be chosen using 
values of nzmax from noisemap with a suitable threshold. This 
quantity simply identifies the maximum value for a window-
averaged pixel in the time series; clearly, unless some values 
in the time-series are above a given threshold, there is no point 
in applying a step fit.   
 
For a set of 8 images of size 400x400 pixels in the absence of 
any masks, timings obtained for Region 1 on our high-
performance computing system 
(http://www.shef.ac.uk/wrgrid/iceberg) were: noisemap ~ 19.3 
s, changemap 85.3 s and stepmap 1375.6 s. These would scale 
to roughly 39 min, 2.85 hr & 45.85 hrs respectively for the full 
image size. With masking provided by noisemap the values 
recorded for Region 1 were changemap 18.3 s and stepmap 
302 s, which scale to a more manageable 37 min and 10.1 hrs 
respectively for full images.   
 
Example fits using a line and a step function are shown in 
figure 4 for the data of Region 1. 
 

 
Table 3c stepmap 
 
Inputs Meaning 
a The set of N images, i.e. time series data 
Tnorm Forest intensity normalization data 
mask_stat Forest intensity statistics 
Tsd A threshold relative to forest standard deviation 
nwin A window size for spatial averaging 
M A mask determining a region to be analysed 
 
Outputs Output pixels are set = 0 unless the following criteria are 

met: 
spos Pixels with positive step change >  mean + Th 
sneg Pixels with negative step change <  mean + Th 
bpos Pixels with baseline >  mean + Th  
bneg Pixels with baseline <  mean – Th 
tpos Returns the image number for the time of greatest change if 

spos>0 
tneg Returns the image number for the time of greatest change if 

spos<0 

 
 

 
 

 
Figure 4. Fitting of normalized intensity time series for a region suspected of 

being subject to deforestation: (a) by a simple line (b) by a step function. Each 
fit is shown as a magenta line. Blue lines represent the normalized intensity 

over the whole series for 25 individual pixels centred at 0.576703 S, 
102.677675 E; the average of these is shown as a black line.  The red line 
shows the forest mean intensity and the green lines represent 1 standard 

deviation either side.   

 



III.  RESULTS AND SUMMARY  

1) Results 
 
The results of the stepfitting exercise are illustrated in Figure 5 
for two different threshold levels.  In Table 4 the numbers of 
pixels for each category are recorded.  It can be seen that, of 
the 4481 pixels assigned, 2491 lie within the known forest, 
leaving 1990 outside.  This means that, in the absence of any 
prior land-cover knowledge, the false-positive ratio is at least 
44.4%.  For a higher threshold level the total number of hits 
decreases to 1353 of which 641 lie outside the known forest so 
that the false-positive ratio has increased to 47.3%.  An 
associated map of the step timings is shown for Figure 6 for 
the higher threshold.   A comparison with figure 5 shows that 
the areas chosen outside the forest return an early step time & 
this may be a way of distinguishing some false from true 
positives.   
 
Table 4 Pixel counts for detections with changemap and 
stepmap and the number of overlaps with each other and the 
forest class.  
 
(a) with thresholds set low at 0.5, 0.35, 0.65 

Count Forest cpos spos 

Forest 57009 5552 2491 

cpos 5552 9279 3529 

spos 2491 3529 4481 
 
(b) with thresholds set high at 1.0, 0.75, 0.75 

Count Forest cpos spos 

Forest 57009 1353 712 

cpos 1353 1917 960 

spos 712 960 1353 
 
 

 
 

 
Figure 5. An image centred on region 1 using the routine stepmap overlaid on 
the primary forest regions (shown green).  Non-zero values of spos are shown 
red or yellow where they overlay forest regions:  (a) with threshold set at 0.65 

standard deviations (b) with threshold set at 1.0 standard deviations.  

 

 
Figure 6. An image associated with 4(b) showing the time of step for the 

regions highlighted.  The colour-bar represents a continuous advancing time 
scale with 0 meaning no image and images 8 mapped on to 1.  It thus 

represents advancing time with are mapped on to the scale 0-1. 

In figure 7 the low threshold map of Figure 5(a) is overlaid by 
the primary forest regions and the noise metric, nz (Eq. (1)), 
which takes the blue channel. Where the noise metric overlays 
the high-step regions outside the forest the colour becomes 
pink, and it can be seen that many of these likely false-positive 
areas have been picked out in this colour.  These areas appear 
to be associated with paddy fields (compare with Figure 2(a)).  
The intensity plot shown as region 10 in the Appendix 
demonstrates that paddy fields can show very strong 
fluctuations, which suggests that nz may indeed be a useful 
tool for reducing this particular source of false positives.   
 

(a) 

(b) 



 
Figure 7  An image centred on region 1 using the routine stepmap overlaid on 
the primary forest regions (shown green).  Non-zero values of spos are shown 
red or yellow where they overlay forest regions.  Overlaid in blue are pixels 

with high values of nz; where coincident with the step-fitted regions these show 
as pink. Virtually none of the regions identified as suspect in the forest are 
overlaid by this metric (where they would appear white in this image).  The 

stepmap and noisemap thresholds were set at 0.65 and 1.0 standard deviations 
respectively. 

 

 
Figure 8  An image centred on region 1 using the routine stepmap overlaid on 
the primary forest regions (shown green).  Non zero values of spos are shown 
red or yellow where they overlay forest regions.  Overlaid in blue are pixels 
with high values of cpos; where coincident with the stepfitted regions these 

show as pink. Most of the regions identified as suspect in the forest are overlaid 
by this metric (where they appear white in this image).  The stepmap and 

noisemap thresholds were set at 0.65 and 1.0 standard deviations respectively. 
 
In figure 8 the low threshold map of Figure 5(a) is overlaid by 
the primary forest regions and high values of cpos, which 
indicates a high level of change over the time-series (see Table 
3b). Where this overlays spos (the high-change step-fit metric 
Table 3c) within the primary forest region the result is white, 
and where it overlays spos outside the forest region the result 

is pink.  The white areas suggest that changemap matches the 
results of stepmap within the forest regions and supports its 
use as a quick but possibly rough tool for locating suspect 
areas.  Note that the pink areas in figure 8 tend to complement 
those in figure 7.  A number of red areas remain and thus 
changemap may also be useful in combination with stepmap 
to cut down the false positive ratio. 
 
In figure 9, the results of step fitting are again combined with 
the noise function nz and the primary forest mask for Region 3 
and its surroundings.  In this figure the angular areas shown 
black are designated “cleared post acacia harvested” in the 
WWF database (see figure 2b) and are picked out well by 
plotting the hav metric of noisemap.  Red areas identified by 
stepmap overlap some of these regions and also extend into 
the forest, where they show as yellow.  Region 3 itself shows 
yellow in the centre of figure 9(a).  The noise metric nz has 
again been successful in picking out some erroneously 
identified regions outside the forest area (where blue and red 
combine to give pink) but has not picked out the mottled 
region inside the forest boundary in the lower-right quadrant 
(a typical locality has the position: 0◦ 16’ 59.61’’ S,  102◦ 57’ 
26.41 E’’).  This is labelled in the WWF database as “swamp 
forest very open canopy”.  This region is also picked out by 
changemap and so it is a probable false positive area that we 
cannot currently reject by using alternative metrics.  An 
associated map of the step timings is shown in Figure 9(b), 
where it is clear that this mottled region stands out in red 
(meaning the step was fitted at the end of the sequence) while 
the more likely suspects for deforestation changed around 
mid-sequence and are coloured blue or yellow. Time-series 
plots for this region show a steady increase in intensity over 
the year, suggesting that stepmap has erroneously fitted a 
region of change with a step at the sequence end.  This is a 
problem that may be remedied by using a longer time-
sequence but alternative means of identifying these difficult 
areas are also being sought. 
 
We have already made some comparisons with Fine Beam 
Dual (FBD) images, and expect to extend this, particularly 
with a view to developing the second objective of the project.  
A large region to the north-west of region 3 has clearly been 
affected by plantation work, as evidenced by linear features 
that are probably due to drainage channels.  These have not 
been picked out by our analysis so far because the forest 
region was probably cleared after the images used to compile 
the WWF database, but before 2007.  These are shown more 
clearly in figure 10(a) and compared with a higher resolution 
FBD image in Figure 10(b).  These features could probably be 
picked out on a ScanSAR images by using a texture filter, and 
this will be investigated during the next phase of the work.  
 

Although the exact location of Region 3 is seen to be within 
the WWF-designated primary forest area in Figure 9(a) in the 
FBD image (acquired 27/07/2007), in Figure 10(b) it is clearly 
seen to be part of the plantation, but also coloured blue.  The 
intensity plot for this region (shown in the Appendix) shows 



that the event occurred between images 3 and 4, which were 
acquired in May (03/05/2007) and June (18/06/2007) 
respectively – i.e. before the FBD image.  The evidence could 
suggest that primary deforestation occurred in June and the 
ground was quickly turned to plantation by July, or more 
likely (since much of the plantation seems established) that 
Region 3 is actually a plantation management event in a pre-
existing plantation rather than deforestation.  If this is true the 
WWF database is in error; currently planned fieldwork will 
establish this.  This clearly highlights the importance of FBD 
images to support or refute the results of temporal ScanSAR 
analysis. 

 
Figure 9(a) An image centred on region 3 using the routine stepmap overlaid 

on the primary forest regions (shown green).  Non-zero values of spos are 
shown red or yellow where they overlay forest regions.  Overlaid in blue are 
pixels with high values of nz; where coincident with the stepfitted regions 

these show as pink. Here, some regions show white where forest regions are 
overlaid by both metrics.  A mottled region (lower centre right) shows yellow, 

but seems unlikely to be due to deforestation.  The stepmap and noisemap 
thresholds were set at 0.65 and 0.5 standard deviations respectively. (b) The 
same image showing the time of step for the regions highlighted.  The colour 
bar represents a continuous advancing time scale with 0 meaning no image 

and image 8 mapped on to 1.  It thus represents advancing time mapped onto 
the scale 0 -1.  The mottled region shown as red in this figure indicates that a 

step has been fitted right at the end of the time-series.   

 

2) Potential difficulties 
 
We have seen that the high level of false positives recovered in 
Region 1 can be significantly reduced by using other metrics.  
The mottled (assumed) false-positive area in Region 3 
currently can only be recognised from its very late time-of-
step.  This is quite possibly the result of the step fitting routine 
attempting to fit something which is not a step, and 
investigating this will be a priority.  We are surer of the results 
that give a clear step signal in mid time-series, when there are 
data either side of the step to inform the routine.  However, the 
hope would be to identify regions that are being deforested 
during the most recent cycle, rather than those that have 
already been deforested, say 6 months ago.  A single step at 
the end of a sequence may therefore be insufficient for an 
unambiguous identification of deforestation. Regions that 
fluctuate wildly in scattering intensity or have an annual spiky 
variation (like paddy fields) can be discounted, but regions 
that have shown low variation in the past and suddenly change 
are clearly of interest.  An ability to recognise and map 
primary forest regions without prior knowledge forms part of 
the second objective of this project and clearly is important to 
the wider application of the approach described above.   
 
Further investigation is needed into how the analysis is 
affected by use of the known forest variation to normalise data 
and detect changes relative this background.  It is well known 
that rainfall varies markedly over Sumatra and so it may be 
expected that the annual variation of backscatter from forest 
may vary from place to place. In the absence of this 
knowledge we may be forced to normalise with respect to 
some local average or even with respect to the whole temporal 
image variation.  To this end it may be worth studying the 
annual variation of other land-cover categories for 
comparison. 
 

3)  Summary 
The characteristic sharp increase in backscatter caused by 
tropical deforestation allows large areas to be surveyed rapidly 
for evidence of deforestation by first measuring temporal 
variability in a time-series of ScanSAR data to detect regions 
of interest, then temporal analysis in these regions to locate the 
time of the event to within 46 days. This process has been 
implemented as an automatic algorithm, which is currently 
being assessed in a case study using ground data from Riau.  
 
Data have already been obtained to extend the time-series for 
the current ScanSAR scene.  These will be processed with an 
updated algorithm, together with the images used here, to 
assess the findings in this report; this is expected to show that 
an extended series gives better confidence in the results.  We 
then aim to analyse the whole scene and,  depending on data 
availability, extend the analysis to the whole of the area 
covered by the WWF database.   
 
Up to this point, our analysis has been developed only over 
Riau, but we expect it to be generic and transferable, and we 

(a) 

(b) 



will test it in other regions once suitable data are acquired, 
with the intention of extending it to the whole of Indonesia. 
This will require methods to define a prior approximate map 
of primary forest, which can be based on optical or radar data. 
This will be investigated in the next phase of the work. 
 
The work described in this report has its most important 
application in understanding the tropical carbon balance and in 
its contribution to the proposed UNFCCC Reduced Emissions 
from Deforestation and Degradation mechanism. The 
PALSAR sensor appears to be an extremely powerful tool for 
tracking tropical deforestation, but it is critical for its general 
acceptance that well-founded methods to use the data are 
developed, tested, demonstrated and made available in a form 
that can readily be applied by the tropical forest nations 
themselves. This work aims to make progress towards 
supplying both the necessary tools and confidence in their 
ability to deliver the required information. 

 

 
 

 
 

Figure 10  (a) A small region of a time-averaged de-speckled ScanSAR image 
surrounding region 3 showing texture probably associated with plantation 
drainage.  PALSAR in ScanSAR mode acquired Jan-Dec 2007 © JAXA/METI  
(b) A high resolution FBD image of the same area where the colour derives 
from polarisation channels shown as: HH-red, HV-green, HH/HV-blue. 
PALSAR in FBD mode acquired July 2007 © JAXA/MET 

 

IV.  M ISCELLANEOUS 

 
1) Appendix 

This Appendix displays time-series plots for the ten regions 
detailed in Table 1.  The 25 lines shown in each plot 
correspond to the individual pixels in a 5×5 window centred 
on the central pixel of each region.  The red and green lines 
show the mean and one standard deviation values for the 
whole image (excluding pixels with value zero). 
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