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Abstract— Deforestation in the Sumatran province ofRiau is

found to cause an initial marked increase in HH bakscatter.

Large areas can therefore be rapidly surveyed for édence of
deforestation by measuring temporal variability in a time-series
of ScanSAR data. Regions of anomalous change canethbe
subjected to temporal analysis to find the timing bdeforestation

events to within 46 days. Algorithms to perform thee operations
automatically have been implemented and are curreht being

assessed and refined using field data. Comparablessults for
annual change are also achievable using Fine Beanu& (FBD)

data, but this involves more substantial data handthg and cannot
localise the time of deforestation. Though the angis has been
developed only over Riau, it is expected to be geme and

transferable, and will be tested in other regions mce suitable
data are acquired, with the intention of extendingt to the whole

of Indonesia.

Index Terms— ALOS PALSAR, K&C Initiative, change
detection, ScanSAR, tropical deforestation

. INTRODUCTION

A. Project objectives
The objectives of this project are:

of ScanSAR time series. The analysis this invole¢so
contributes to meeting the second objective. @umédiate
aim is to be able to detect all new deforestatiocuaing from
the start of the ALOS time-series so that it candgorted on
at 46 day intervals, and the current drive is feeds on
developing the machinery needed to achieve this goa

Up to now, we have carried out a case study appiedsingle
time-series of ScanSAR data for the year 2007, rieroto
develop methods that highlight regions showing enad of
deforestation and track the progress of these svéiitese
methods should be able to analyse a year's Scari8¥Bes
for a single scene within 12 hours. A more rapidt bu
approximate analysis should be achievable withihaur.

B. Scientific findings

Analysis of PALSAR data seems to indicate that mult
temporal ScanSAR data is as capable of measuring
deforestation as Fine Beam Dual (FBD) data. Thaviples
major advantages, particularly coverage of wideaarand the
ability to locate the timing of deforestation ev&td within 46
days. Deforestation in Riau (the test area) typidahds to an

increasein HH backscatter, but at the moment we have no

1. To demonstrate that ALOS ScanSAR and FBD datdiasets long enough to know how the signal suleswiyu

can successfully detect natural forest cover chaimge

Indonesia, where cloud and haze hamper naturalstfore

monitoring based on optical remote sensing data.
2.
natural forest and land cover types in Indonesia.

develops over longer periods. Evidence from Brézicked
up by physical argument) suggests that the sigiibtecline
with time to values well below that of mature fdre¥he

To assess the ability of ALOS data to detect ke, acteristic signal of a deforestation event datlis that

large areas can be rapidly surveyed for evidence of

3. To develop software that permits ALOS-basedsibre jetqrestation by measuring temporal variability dntime-

monitoring to be carried out in a scientificallybtst manner
at technician level.

4,
with tools for using ALOS-PALSAR data that allow
transparent, accurate and frequent tracking ofrabfiorest
cover change independently of cloud and haze aatdctin be
used as a basis for action on biodiversity consienvaforest
carbon management, etc.

Up to now, work has been directed primarily towthd first
and third objectives, with particular emphasis ba analysis

series of ScanSAR data. Detected regions of chaagehen
be subjected to temporal analysis to find the adimang of

To provide the Indonesian and global communityy,e eyent, These operations can be realised bymati

algorithms which have been implemented and areentlyr
being tested. Up to now, the analysis has beenajse only
over Riau, but we expect it to be generic and feanble, and
it will be tested elsewhere once suitable data aguired,
with the intention of extending it to the wholelpnflonesia.



DESCRIPTION OF THE PROJECT

A. Relevance to the K&C drivers

The project was designed to gain better understgndf the
land carbon cycle, and in doing so derive inforpratielevant
to UNFCCC reporting under Land Use, Land Use Chamge
Forestry. Its original focus was meant to be temafeforest,
but this was modified for three reasons: (1) theatgr
importance of tropical land use change for the alalarbon
budget; (2) the proposal for the post-2012 Reduoctad
Emissions from Deforestation and Degradation meishaumt
the Bali COP-12; (3) development of good workingk$
between the University of Sheffield and WWF Inddaes
which gives a means to link technical developmémiground
data, provides access to important institutionadkdi in
Indonesia, and supports applications on the ground.

The key initial aim of the project was to developthodology
to map changes in forest cover using ALOS PALSARada
The expectation was that multi-temporal (annualDF@ata
would be crucial for this, but investigations ae tRiau test
site in Sumatra suggest that equivalent, and it facre
powerful, results may be obtained using 46-day akpe
ScanSAR data. We also aimed to develop methodstitnate
product accuracy, and thence to generate mapsestfoover
and maps of forest changes, together with corrafipgn
accuracy assessments. Substantial progress hasrzakmnin
developing methods to detect deforestation andtitagahe
times of these changes. We are currently planniogkvin
Sumatra to test the performance of the algorithms a
optimize the parameters used in them. We then dntesith
the help of JAXA, to extend the methods to the whof
Indonesia.

B. Work approach

The work has benefited greatly from access to thWgRA2007
land-cover database for Riau & Jambi [1]. Thisvites
detailed information about vegetation types cogrithe
region and is based on remote sensing data nomifl

2007. We also have ALOS ScanSAR and Fine Beam Dueil

images for much of the same region spanning thee sarar.
With the help of the WWF database we can identiiynpry
forest regions and assess their normal charadtsridt also
allows us to reduce the processing task, sincddtarestation
studies we can ignore areas already known to htnex types
of land cover. This is very helpful, since a sin§leanSAR
image typically contains ~3a0° pixels, and a long time-
series of images represents a significant amountdath
processing. The approach we have developed is tectde
anomalous changes in regions labelled as foressethare
likely to indicate deforestation events. Subsequg@rations
aim test this hypothesis and determine when thengdm
occurred. The wider challenge is to extend the oughto
regions outside the database where there may bkephésr
knowledge about forest cover.

Temporal variability within a time-series of imagean be
charted by recording the temporal standard deviadibeach

pixel. Seasonal fluctuations together with slovarafjes over
the period of the time-series may contribute ts,thience to
detect deforestation we need a more specific teahpor
signature. Initial searches used colour-coded coatioins of
images in conjunction with the WWF land-cover dath to
survey the type of changes that occur and to ifjestispect
regions within designated primary forest areas foore
detailed study.

Each pixel of a ScanSAR image covers a region pé si
100mx 100m and we have made the assumption that under
deforestation enough of each pixel is cleared withe 46-day
cycle to change significantly the scattering caégfit between
successive images in the time-series, thus gengratstep in
the intensity (more subtle effects due to partiebance or
forest degradation will be studied later). In pice the
algorithms use a window to average over square$xaf
pixels and we are thus currently working at a ghatisolution
of 500mx 500m per cycle.

A preliminary routine ¢hangemap distinguishes positive
from negative changes that exceed a threshold va#lueas of
positive change are picked out as regions of susgec
deforestation. This increase is thought to be tuehe
practice of leaving tree stumps and other dettiisind after
feling. The stumps in particular would lead togthni
backscatter due to the double bounce mechanismothier
areas of the world, alternative management practivay
instead lead to a negative change, and partlyhisrreason it
is worth retaining the possibility of studying botypes of
change.

A more specific routine sfepmap fits a step function to
window-averaged data and filters out regions ofitpes or
negative step-size that exceed a given threshdlee vaThis
routine picks out many areas in common vagttlangemapand
some that are different. It also produces ex#iaable data
on the time of step. However it is relatively sjaaking about
6 x the CPU time othangemap A third routine fioisemap
has also been developed to look more generallggibms of
anomalous behaviour, particularly with a view tolaging
regions that might lead to false detections. Troistine is
relatively fast and may be used to initially scréame areas
for possible regions of interest. Inside the WWHRabase
region it is possible to focus only on known forastas, but in
regions without prior knowledge of land cover a meaf
locating regions of interest will be needed. Usitaisemap
pixels that do not include any periofiscattering that exceeds
the normal standard deviation can be identified mmdred,
allowing use of the relatively slostepmapto focus only on
the remaining areas.

Satellite and ground data

In the initial phase of program development we have
concentrated on a set of eight ScanSAR images ezkrn
Lat. 1.728 S, Long. 102.332 E that partially oaprthe WWF



1)

land-cover database for Riau [1]. This is the cletepset of
46-day ScanSAR images for 2007, and they are glliesd
with the same geometry. Using such a limited datasses
necessary because data quota limitations preventeck
extensive coverage. However, it has been sufficitmt
developing methods that should have
applicability.

In addition, we have nearly full coverage of RiguHBD data
from June to August 2007; a missing strip had tdillesl with
November data.

Before analysis the eight ScanSAR images were atalyr
co-referenced using Gamma software. A multi-chariifielr
[2] was then applied to remove speckle. The IDRde for
this procedure has been structured to work autcalbtiwith
a large number of images and delivers de-speckiesl df the
same name with modified extensions. The routise &hds
the combined intersection areas of all input fdesl applies to
all results. In other words, any regions thatrasecovered by
all input files are removed. Processing takes fleas 1 hour
for 8 images and intermediate processing files aod
currently saved. However, if a significantly longene base
is available it may be worthwhile to implement aerative
procedure to speed the processing of new imagesmith
would require the archiving of some intermediatesfi The
resulting average image is shown in context withdatabase
in Figure 1.

400 km

Figure 1. A de-speckled and averaged PALSAR S&Rrifhage of the Riau
and Jambi regions of Sumatra overlaid by the WW@#72a8nd-cover database.
Images obtained Jan — Dec 2007, ALOS K&QAXA/METI

Regions

From the preliminary analysis using
combinations of images in conjunction with the W\éRd-
cover database, ten regions are discussed hedstaited in

Table 1. For each of these regions, the intessitiea %5

window of pixels are plotted for comparison asraetiseries
in the Appendix. Two of these (Regions 1 and 3)ehall the
hallmarks of deforestation events: 1) the intgnsihanges
abruptly over a 46-day period in a region desighat® forest;

much  wideR) the regions have an angular appearance; 3)aifeeglose to

known cleared areas and plantations. In addifmamregion 1
the progressive nature of the event is consisteith w
sequential forest clearance. For comparison, apfgre
undisturbed regions immediately adjacent to regibremnd 3
have also been investigated — these have a slagaply
seasonal intensity variation indistinguishable fromther
regions of primary forest. Regions 5 — 10 have kaden
chosen because they belong to regions of relativégh
temporal standard deviation. These types of regiounld
potentially be wrongly identified as deforestatioit; is
therefore important to know their characteristics.

Table 1 Regions investigated in detail.

Latitude Longitude
South East
Region 1 034'36.13" | 10220'39.63" | Suspected deforestation
Region 2 033'10.18” | 10239'31.80" | Adjacent forest to region 1
Region 3 013'28.30" | 10254'25.47" | Suspected deforestation
Region 4 012'31.12" | 10255'10.97" | Adjacent forest to region 3
Region 5 015'28.30" | 10249'47.49" | A forest region with
unusually high s.d.
Region 6 011'44.51" | 10240'48.73" | River and associated forest
Region 7 025'29.81" | 10249'57.83" | An anomalously brigh
region
Region 8 018'30.91" | 102 35'13.05" | Probable flood plain
Region 9 018'30.94" | 10233'39.42" | As above
Region 10| 042'36.26” | 10258'44.65" | Paddy fields

The WWF database is very detailed and for the mepmf
the current study the regions have been amalgamateglist

Table 2 WWF database amalgamated regions

Landcover

nine groups as shown in Table 2.
Fill

Primary Forest (all types)

Shrub,Grass& Fern

Regrowth (All types including Forest, Shrubs, Senidukar Muda)

Plantation (Rubber, Oil Palm, Acacia, Coconut)

Paddy fields

Water

Agricultural (mixed agriculture, mixed garden)

Cleared, cleared post acacia harvested, etc.

Burnt

Built

colour-codedmiddle and end of the cycle.

All the regions given in Table 1 lie within the dbase. Here,
in Figure 2 we show the context of the two regiofignain
interest. The land-cover maps are superimposedopasite
ScanSAR images colour-coded to reference the bieginn
In these images #ggons of
interest lie at the image centres. Region 1 chémgkatively
late in the year (see Appendix) and appears asishigbatch in
Figure 2(a), region 3 changed closer to mid-cyclé appears



as a greenish patch in Figure 2(b).

3)Tools

Figure 2 (a) A small section of a time-averagesspeckled PALSAR
ScanSAR image surrounding region 3 showing texgusbably associated
with plantation drainage. (b) A high resolution@-Bnage of the same area
where the colour derives from polarisation chanslke&swn as: HH-red, HV-
green, HH/HV-blue. Images obtained Jan — Dec 2800S K&C ©
JAXA/METI

2)Normalisation

An initial view of the areas that are subject tamfje can
easily be obtained from the temporal standard dewigfor
each pixel. However, over a whole year, it is ewidthat the
average backscatter of the forest regions changesicantly.
Most of our work has therefore been carried ouh\iitages
corrected for this (probably) seasonal variatiombymalising
intensities relative to the forest background. iBtens
relative to this background that lie within area&sidnated as
primary forest then highlight regions of intereBt masking
out non-forest regions these can easily be isolaed
identified, as shown in figure 3.

008
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100 km

Figure 3. Temporal standard deviation map of adedzdled as forest in the
WWEF database that overlap with the image regioreag outside the forest or
image are shown in black and the standard deviafiother regions is
indicated by the colour-bar, with regions of higretandard deviation shown

in white. Images obtained Jan — Dec 2007, ALOS K&TAXA/METI

Three MATLAB routines have been developed and are
described briefly below. The routimoisemapwas originally
designed to seek anomalous areas that might cotfiesstep
fitting routine. In particular, if steps are foumd data with
overall high or low average values compared tosfotteey are
unlikely to be part of the forest. Strongly flucting data
might also lead to an erroneous fit. All of thesmitines
incorporate user-defined window-averaging and adien
threshold valueTy, expressed in units of the forest temporal
standard deviatioBDx:
T,=T,/SD )

where T, is the threshold expressed as an intensity and the
standard deviation is obtained from the fluctuatiaver the

full extent of forest available in the image acéogdto the
WWEF database.

Table 3a _noisemap

Inputs Meaning

a The set oN images, i.e. time-series data

Tnorm Forest intensity normalization data

mask_stat Forest intensity statistics

Tq A detection threshold; see Eq. (1)

nwin A window size for spatial averaging

Outputs Output pixels are set = 0 unless the followingeti# are
met:

hav Pixels with average intensity > meany+ T

lav Pixels with average intensity < mean,- T

nz Pixels with a noise metric nz > meany+ T

sdev Pixels with temporal standard deviation > med,

nzmin Pixels with a temporal minimum value < medpn

nzmax Pixels with a temporal maximum value > medp

The noise metric was designed to discriminate betvae step
function response and strong temporal fluctuationscan be
represented as

: l N-1
nz, ——Z‘Aaijk , (2)

N i

where 0, is the {, j)'th pixel of the kth image and
Aoy =0y,
It is strongly correlated with other noise measigesh as the

standard deviation, but it may have a specificinsavoiding
false positives, as we show later.

~ Oy is the change in intensity between images.

The routinechangemapfits a straight line to the window-
averaged intensity time-series. The input argumair@ssimilar
to those for noisemap but include an additional mask,
represented here as M, that limits the area ovachwthe
calculations are performed. This may be a maskirddafrom
regions of the WWF database (particularly forestt mmay be



obtained from regions identified Impisemapas having, e.g., a
significantly high standard or other deviation frahe norm.
Note that the criterion for detecting positive char(“cpos)

Table 3c stepmap

in Table 3b could equally be expressed as “pixél @ fitted | Inputs Meaning
final image intensity > Tsd,” and similarly for ane a The set oN images, |.€. time series data
Tnorm Forest intensity normalization data
mask_stat Forest intensity statistics
Table 3b changemap Tsd Athreshold relative to forest standard deviati
nwin A window size for spatial averaging
Inputs Meaning M A mask determining a region to be analysed
a The set oN images, i.e. time-series data
Tnorm Forest intensity normalization data Outputs Output pixels are set = 0 unless the followingeciit are
mask_stat Forest intensity statistics met:
Tsd Athreshold relative to forest standard dewrati Spos Pixels with positive step change > meap + T
nwin A window size for spatial averaging sneg Pixels with negative step change < meap + T
M A mask determining a region to be analysed bpos Pixels with baseline > meang T
bneg Pixels with baseline < meany T
Outputs Output pixels are set = 0 unless the followingeciit are| | tpos Returns the image number for the time of getathange if
met: spos>0
cpos Pixels with positive change gradient.¥ N tneg Returns the image number for the time of getathange if
cheg Pixels with negative change gradient AN spos<0
Clpos Pixels with fitted®limage intensity > mean +T
Clneg Pixels with fitted®limage intensity < mean T

The routine stepmapfits a step function to the window-
averaged intensity time-series using the matlabtimeu
fminsearchthis in turn uses a Nelder-Mead simplex algorithm
to optimise the fit. The routine is initialised fiynding the
time of maximum change, the initial value and timalfvalue.
The fit is relatively slow compared tthangemapand overall
timings for this routine are roughly »6those forchangemap
Like changemapthe input arguments include a mask, M, that
limits the area over which the calculations arefqgrered. In
the absence of any prior knowledge of forest cover,
currently seems as though this mask can best bgenhasing
values ofnzmaxfrom noisemapwith a suitable threshold. This
guantity simply identifies the maximum value foméendow-
averaged pixel in the time series; clearly, unlesme values
in the time-series are above a given thresholdettseno point

in applying a step fit.

For a set of 8 images of size 400x400 pixels inabgence of
any masks, timings obtained for Region 1 on ourhhig
performance computing system
(http://www.shef.ac.uk/wrgrid/icebergvere:noisemap~ 19.3
s,changemaf85.3 s andtepmapl375.6 s. These would scale
to roughly 39 min, 2.85 hr & 45.85 hrs respectivigythe full
image size. With masking provided Inpisemapthe values
recorded for Region 1 werehangemapl8.3 s andstepmap
302 s, which scale to a more manageable 37 miri@ridhrs
respectively for full images.

Example fits using a line and a step function drews in
figure 4 for the data of Region 1.

Tube plot of window-sampled & normalised linear intensities
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Tuhe plot of window-sampled & normalised linear intensities

003+

Region 1
#pos: 2583 ypos: 1004

Linear intensity

0.005 -

i) L L I L ! L ]
1 2 3 4 5 B 7 g

Image Mo
Figure 4. Fitting of normalized intensity time sarifor a region suspected of
being subject to deforestation: (a) by a simple (im) by a step function. Each
fit is shown as a magenta line. Blue lines repretennormalized intensity
over the whole series for 25 individual pixels cedtat 0.576703 S,
102.677675 E; the average of these is shown achk lihe. The red line
shows the forest mean intensity and the green tegesent 1 standard
deviation either side.



1. RESULTS ANDSUMMARY

1)Results

The results of the stepfitting exercise are illatd in Figure 5
for two different threshold levels. In Table 4 thembers of
pixels for each category are recorded. It candsm ghat, of
the 4481 pixels assigned, 2491 lie within the kndarest,

leaving 1990 outside. This means that, in the rads®f any
prior land-cover knowledge, the false-positive oat at least
44.4%. For a higher threshold level the total nemtf hits
decreases to 1353 of which 641 lie outside the knfmrest so
that the false-positive ratio has increased to %7.3 An

associated map of the step timings is shown foureid@ for
the higher threshold. A comparison with figursf®ws that
the areas chosen outside the forest return an si@pytime &
this may be a way of distinguishing some false frooe

positives.

Table 4 Pixel counts for detections witthangemapand

Figure 5. An image centred on region 1 using theime stepmapoverlaid on

the primary forest regions (shown green). Non-xatoes ofsposare shown

red or yellow where they overlay forest regiona) With threshold set at 0.65
standard deviations (b) with threshold set at fa@dard deviations.

stepmapand the number of overlaps with each other and the

forest class.

(a) with thresholds set low at 0.5, 0.35, 0.65

Count Forest cpos Spos

Forest 57009 5552 2491
cpos 5552 9279 3529
spos 2491 3529 4481

(b) with thresholds set high at 1.0, 0.75, 0.75

Count Forest cpos spos

Forest 57009 1353 712
cpos 1353 1917 960
Spos 712 960 1353

Figure 6. An image associated with 4(b) showingtitine of step for the
regions highlighted. The colour-bar representsrdicuous advancing time
scale with 0 meaning no image and images 8 mappéd b. It thus
represents advancing time with are mapped on tedhie 0-1.

In figure 7 the low threshold map of Figure 5(api&rlaid by
the primary forest regions and the noise metric(Eq. (1)),
which takes the blue channel. Where the noise metérlays
the high-step regions outside the forest the colmeromes
pink, and it can be seen that many of these lifa@be-positive
areas have been picked out in this colour. Thesasaappear
to be associated with paddy fields (compare witfuFé 2(a)).
The intensity plot shown as region 10 in the Append

demonstrates that paddy fields can show very strong

fluctuations, which suggests thax may indeed be a useful
tool for reducing this particular source of falsespives.



Figure 7 An image centred on region 1 using thiime stepmayoverlaid on
the primary forest regions (shown green). Non-zatoes ofsposare shown
red or yellow where they overlay forest regionsceflaid in blue are pixels
with high values ofiz where coincident with the step-fitted regionssthehow

as pink. Virtually none of the regions identifiesisuspect in the forest are
overlaid by this metric (where they would appeaitesm this image). The
stepmapndnoisemaphresholds were set at 0.65 and 1.0 standardtamga
respectively.

Figure 8 An image centred on region 1 using thiime stepmagoverlaid on
the primary forest regions (shown green). Non x@toes osposare shown
red or yellow where they overlay forest regionscefaid in blue are pixels
with high values of cpos; where coincident with sitepfitted regions these
show as pink. Most of the regions identified ageasin the forest are overlaid
by this metric (where they appear white in thisgela Thestepmapand
noisemaphresholds were set at 0.65 and 1.0 standardtimsaespectively.

In figure 8 the low threshold map of Figure 5(api®rlaid by
the primary forest regions and high valuescpbs which
indicates a high level of change over the timeesefsee Table
3b). Where this overlayspos(the high-change step-fit metric
Table 3c) within the primary forest region the flessi white,
and where it overlaysposoutside the forest region the result

is pink. The white areas suggest tbhingemapnatches the
results ofstepmapwithin the forest regions and supports its
use as a quick but possibly rough tool for locatsugpect
areas. Note that the pink areas in figure 8 tenrmbmplement
those in figure 7. A number of red areas remaid #rs
changemapmay also be useful in combination witepmap
to cut down the false positive ratio.

In figure 9, the results of step fitting are agagmbined with
the noise functiomz and the primary forest mask for Region 3
and its surroundings. In this figure the angulaaa shown
black are designated “cleared post acacia harvestethe
WWF database (see figure 2b) and are picked oultt lyel
plotting thehav metric ofnoisemap Red areas identified by
stepmapoverlap some of these regions and also extend into
the forest, where they show as yellow. Regiors8lfitshows
yellow in the centre of figure 9(a). The noise rntehz has
again been successful in picking out some errorgous
identified regions outside the forest area (whdue land red
combine to give pink) but has not picked out thetttad
region inside the forest boundary in the lower-righadrant

(a typical locality has the position 06’ 59.61" S, 10257’
26.41 E"). This is labelled in the WWF database“swamp
forest very open canopy”. This region is also pitlout by
changemapand so it is a probable false positive area that w
cannot currently reject by using alternative msetric An
associated map of the step timings is shown in reig@{b),
where it is clear that this mottled region stands o red
(meaning the step was fitted at the end of the esecp) while
the more likely suspects for deforestation changeslnd
mid-sequence and are coloured blue or yellow. TSewes
plots for this region show a steady increase iengity over
the year, suggesting thatepmaphas erroneously fitted a
region of change with a step at the sequence drds is a
problem that may be remedied by using a longer -time
sequence but alternative means of identifying thdiffecult
areas are also being sought.

We have already made some comparisons with FinenBea
Dual (FBD) images, and expect to extend this, paldrly
with a view to developing the second objectivela project.
A large region to the north-west of region 3 ha=adly been
affected by plantation work, as evidenced by linfsatures
that are probably due to drainage channels. Thase not
been picked out by our analysis so far becausefdhest
region was probably cleared after the images usembmnpile
the WWF database, but before 2007. These are shmve
clearly in figure 10(a) and compared with a highesolution
FBD image in Figure 10(b). These features couttbably be
picked out on a ScanSAR images by using a textiiee, fand
this will be investigated during the next phasé¢hef work.

Although the exact location of Region 3 is seerbdowithin
the WWF-designated primary forest area in Figua @{ the
FBD image (acquired 27/07/2007), in Figure 10(h$ itlearly
seen to be part of the plantation, but also cokbinee. The
intensity plot for this region (shown in the Appéfdshows



that the event occurred between images 3 and 4&hwhier@)Potential difficulties

acquired
respectively — i.e. before the FBD image. The enad could
suggest that primary deforestation occurred in Jameé the
ground was quickly turned to plantation by July, raore
likely (since much of the plantation seems esthbti§ that
Region 3 is actually a plantation management eireat pre-
existing plantation rather than deforestationthi$ is true the
WWEF database is in error; currently planned fieldwavill
establish this. This clearly highlights the im@orte of FBD
images to support or refute the results of tempSm@nSAR
analysis.

Figure 9(a) An image centred on region 3 using thwinestepmayoverlaid
on the primary forest regions (shown green). Neroxalues ofposare
shown red or yellow where they overlay forest ragioOverlaid in blue are
pixels with high values afiz where coincident with the stepfitted regions
these show as pink. Here, some regions show witiggenforest regions are
overlaid by both metrics. A mottled region (loveentre right) shows yellow,
but seems unlikely to be due to deforestation. Stepmapandnoisemap
thresholds were set at 0.65 and 0.5 standard dmsatespectively. (b) The
same image showing the time of step for the regmgisighted. The colour
bar represents a continuous advancing time scéteOxneaning no image
and image 8 mapped on to 1. It thus represennathg time mapped onto
the scale 0 -1. The mottled region shown as redignfigure indicates that a
step has been fitted right at the end of the tierées.

in May (03/05/2007) and June (18/06/2007)

We have seen that the high level of false positieesvered in
Region 1 can be significantly reduced by using othetrics.
The mottled (assumed) false-positive area in Regdn
currently can only be recognised from its very lttee-of-
step. This is quite possibly the result of the ditting routine
attempting to fit something which is not a step,dan
investigating this will be a priority. We are sudd the results
that give a clear step signal in mid time-serielsemthere are
data either side of the step to inform the routirkawever, the
hope would be to identify regions that are beinfpiested
during the most recent cycle, rather than those Have
already been deforested, say 6 months ago. Aesistgp at
the end of a sequence may therefore be insuffidientan
unambiguous identification of deforestation. Regiothat
fluctuate wildly in scattering intensity or have annual spiky
variation (like paddy fields) can be discountedt begions
that have shown low variation in the past and solydehange
are clearly of interest. An ability to recognisadamap
primary forest regions without prior knowledge faripart of
the second objective of this project and clearlyriportant to
the wider application of the approach describedrabo

Further investigation is needed into how the anslys
affected by use of the known forest variation tonmalise data
and detect changes relative this background. e known
that rainfall varies markedly over Sumatra and tsmay be
expected that the annual variation of backscattam fforest
may vary from place to place. In the absence of thi
knowledge we may be forced to normalise with respgec
some local average or even with respect to the evtsshporal
image variation. To this end it may be worth sindythe
annual variation of other land-cover categories for
comparison.

3) Summary

The characteristic sharp increase in backscattasech by
tropical deforestation allows large areas to beesgerd rapidly
for evidence of deforestation by first measuringnperal

variability in a time-series of ScanSAR data toedéetregions
of interest, then temporal analysis in these regtorlocate the
time of the event to within 46 days. This proceas been
implemented as an automatic algorithm, which isrentty

being assessed in a case study using ground dataRfiau.

Data have already been obtained to extend the genies for
the current ScanSAR scene. These will be procesgbdan
updated algorithm, together with the images usec,h®
assess the findings in this report; this is expetbeshow that
an extended series gives better confidence indbkelts. We
then aim to analyse the whole scene and, depemdirdata
availability, extend the analysis to the whole bof tarea
covered by the WWF database.

Up to this point, our analysis has been developdg over
Riau, but we expect it to be generic and transferadnd we



will test it in other regions once suitable date acquired,
with the intention of extending it to the whole loidonesia.
This will require methods to define a prior approate map
of primary forest, which can be based on opticalaoiar data.
This will be investigated in the next phase of Wuek. 1)Appendix

This Appendix displays time-series plots for tha tegions
The work described in this report has its most imgu  detailed in Table 1. The 25 lines shown in eacbt pl
application in understanding the tropical carbolabee and in  correspond to the individual pixels in &% window centred
its contribution to the proposed UNFCCC Reducedssions  on the central pixel of each region. The red arekqg lines
from Deforestation and Degradation mechanism. Thghow the mean and one standard deviation valueshior
PALSAR sensor appears to be an extremely powesbllfor  whole image (excluding pixels with value zero).
tracking tropical deforestation, but it is critidalr its general
acceptance that well-founded methods to use tha det
developed, tested, demonstrated and made avaitabléorm Tube: plo ofirdow-sample naar nfrsites
that can readily be applied by the tropical forestions Jol e
themselves. This work aims to make progress towards e
supplying both the necessary tools and confidenc¢héir
ability to deliver the required information.

V. MISCELLANEOUS

Linsar intansity

Image No

Tube plot of window-sampled linear intensities

Region 2
0s #pas: 2569 ypos: 957

Linear intensity

Image No

Figure 10 (a) A small region of a time-averageespeckled ScanSAR image
surrounding region 3 showing texture probably aisged with plantation
drainage. PALSAR in ScanSAR mode acquired JanZD6Z © JAXA/METI
(b) A high resolution FBD image of the same are@netthe colour derives
from polarisation channels shown as: HH-red, H\egre HH/HV-blue.
PALSAR in FBD mode acquired July 20@7JAXA/MET
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