GCOM-Cによるグローバル土地被覆図 (分類アルゴリズムの開発中)

背景·目的

- 近年、地球温暖化や砂漠化、人間活動による森林破壊などを 背景に地球規模での土地被覆情報の把握が重要性を増してき ている。
- 本研究では気候変動観測衛星GCOM-Cに搭載予定の多波長光 学放射計SGLIによる観測データの利用を想定した世界土地被 覆分類アルゴリズムの開発を目的としている。

■ 地球観測衛星Terra, Aquaに搭載されている中分解能撮像放射 計MODISの観測データを用いて、土地被覆分類を試みた。

分類対象データ

ブロダクト諸元		
バンド	波長域 [µ m]	分解能
1	0.620 - 0.670	
2	0.841 - 0.876	
3	0.459 - 0.479	
4	0.545 - 0.565	500m
5	1.230 - 1.250	
6	1.628 - 1.652	
7	2.105 - 2.155	

経緯度座標系

分類カテゴリーと訓練エリア

n IGBP 土地被覆17カテゴリー

訓練エリアの設定

Google Earth

分類に使用する特徴量

n時領域同時生起行列

n時領域同時生起行列の例

ü Data Lossü Noise : cloud, snow

12 Jul. 2007

Conventional Strategy

time domain interpolation and/or smoothing

分類に使用する識別器

■従来の分類法

■ノンパラメトリック最短距離法

余弦距離:
$$d(x,c) = \frac{\overset{7}{a}}{\sqrt{\overset{7}{a}}}_{b=1} \overset{a}{a} \overset{a}{j} M_{x,b}(i,j)M_{c,b}(i,j)}{\sqrt{\overset{7}{a}}}_{b=1} \overset{a}{a} \overset{a}{j} M_{x,b}^{2}(i,j) \cdot \overset{7}{\overset{a}{a}}_{b=1} \overset{a}{a} \overset{a}{j} M_{c,b}^{2}(i,j)}$$

 $M_{x,b}(i,j)$ … 分類対象画素 Xのバンドb に関する行列 $M_{c,b}(i,j)$ … 土地被覆クラス Cのバンドb に関する行列

分類精度の推定

nテストサンプル

結果

n分類精度: クラスタ数依存性

SR (観測方向反射率)

NR (ナディア方向反射率)

n分類精度: プロダクト間の比較

結論

1. 提案手法

- 特徵量:時領域同時生起行列
- 識別法: ノンパラメトリック最短距離法
- →雲・雪の影響に頑健という期待した性能が得られた

2. 分類精度

スペクトルクラスタを使用すると (1)地表反射率を使用したときより3~4%向上し、99%に達する。 (2)MODIS土地被覆プロダクトより3~18%向上し、SR であっても NR を対象データとした場合と同程度の分類精度が得られる。

nクラスタ画像の生成

nカテゴリー別分類精度:NR

nカテゴリー別分類精度:SR

Terra/Aqua主要諸元

衛星	Terra	
打上げ日	1999年12月18日	2002年5月4日
使用ロケット	Atlas(アトラス)-	Delta(デルタ)-
衛星質量(kg)	5190	2934
電力(₩)	2530	4860
設計寿命(年)	6	6 (AMSR-Eの設計寿命は3年)
軌道	太陽同期準回帰軌道	太陽同期準回帰軌道
通過時刻	10:30(衛星進行方向:北南)	13:30(衛星進行方向:南北)
高度(km)	705	705
傾斜角(度)	98	98
回帰日数(日)	16(233周回)	16(233周回)
周期(分)	99	99
観測機器	MODIS, ASTER, CERES, MISR, MOPITT	MODIS, AIRS, AMSR-E, AMSU, CERES, HSB

出典:http://www.eorc.jaxa.jp/hatoyama/satellite/sendata/modis_j.html

今後の課題

現在のテストサンプルは訓練エリアからサンプリング して得たものであるため、別個にテストエリアを設定す る必要がある。