German Spaceborne Radar Program:

TerraSAR-X, TanDEM-X and Beyond

Alberto Moreira

1st German/Japanese Science and Application Workshop for Next Generation SAR Sola City, Tokyo June 27, 2013

Knowledge for Tomorrow

Launched 21 June, 2010

Atacama Desert, Chile

Societal Challenges of Global Dimension

Megacities

Disaster

SAR Remote Sensing and Global Societal Challenges

The German Spaceborne Radar Program

Launched 15 June, 2007

TERRA SAR X ... during the environmental tests

DLR

erraSAR 🗡 TerraSAR-X Mission Profile

TerraSAR-X Development and Operations

Image Quality of European SAR Satellites (Year 2000) ca. $10 \text{ m} \times 20 \text{ m}$ resolution

Pyramids of Giza, Egypt

法官官

Married

Sydney, Australia, multi-temporal

Mississippi, USA - Flooding

DEUTSCHLAND - Deggendorf Hochwassersituation am 7. Juni 2013 - Betroffene Fläche - Übersicht 1:45.000

ZKI-DE Aktivierungstr 00

Produktor. Jersionsnr. I

Disaster Monitoring

Deepwater Horizon Gulf of Mexico 30 April 2010

© AFP

Drygalski Glacier, Oct 2007 – July 2008

Las Vegas, USA (time series of 20 images)

TerraSAR-X: New SAR-Modes

Staring Spotlight Mode – Available October 2013

	Azimuth:		Range:		
7	Resolution:	0.24 m	0.85…1.77 m		
7	Scene Size:	2.12.7 km	7.5…4.6 km		
7	Single Polarization (HH, VV)				

Wide ScanSAR Mode – Available August 2013

	Azimuth:	Range:
- Resolution:	40 m	610 m
- Scene Size:	200 km	194…266 km

- Single Polarization (HH, VV, HV/VH)

Staring Spotlight Mode

Spotlight Basic Product

Staring Spotlight Product improved radiometric resolution

Geometric Resolution: ~1 m × 1 m

Wide ScanSAR

Grand Canyon, USA

Launched 21 June, 2010

Standards for Digital Elevation Models (DEM)

TanDEM-X: First Digital Elevation Model

October revolution

160

DLR

ANDEM

DEM Performance Comparison

TanDEM-X Digital Elevation Model Brown Coal Mining Hambach, Germany

Chuquicamata Mines, Chile 2010-08-14T10;12:25 517

Iceland

Relative Height Error - First Coverage

DLR

Relative Height Error - Second Coverage

DLR

Future SAR Systems

SAR Roadmap (X-Band)

TerraSAR-NG – TerraSAR Next Generation

HRWS – High Resolution Wide Swath

SAR Roadmap (X-Band und L-Band)

Tandem-L

Tandem-L: Proposal for an innovative radar mission for monitoring Earth dynamic processes

3-D Structure Mode

Polarimetric Backscattering

3-D Forest Structure

Forest height and Biomass

Tomography

Polarimetric SAR Interferometry (Pol-InSAR)

Validation of the Tree Height

SAR Tomography, L-Band

Deformation Mode

systematic multi-temporal acquisitions (image stacks)

Vulcano Fogo, Sao Miguel, Azores

TerraSAR-X Time interval = 22 days ALOS (L-Band) Time interval = 46 days

Possible Radar System Concepts for Tandem-L...

Deployable Reflector Antennas

Digital Beamforming with Reflector Antennas

निय विये

133

Digital Feed Array with T/R-Modules

DLF

Digital Beamforming with Reflector Antennas

ବୁ ବୃତ୍ତୁ କୁତୁତ୍ ବୁ

प्रधा प्रधा

Digital Feed Array with T/R-Modules

Digital Beamforming with Reflector Antennas

...... And the state of t

Constanting of the second

And the second second

And the second second

And the second second And the second second

A Real Property of the second second

A REAL PROPERTY OF THE PARTY OF And the second s

A REAL PROPERTY OF THE PROPERT

......

- manual second

- -----

Annun and a second second

- manual ma

Communication of the second se

in the second

And the second second

Summer of the second

North States of States of

annum the second

munumun.

munumun.

munumun .

Munumunun

mannan and a second

nunnunnun

......

and and a second second second

numunumunumunu numunumunumun in the second se in manual and a second

Comparison of Imaging Capability

Tandem-L

XA

DLR

	Tandem-L Science Products	Resolution	Revisit
	Forest height		
Biosphere	Above ground biomass	20 - 50 m	16 days - seasonal
	Vertical forest structure		
	Plate tectonics		weekly
Geo-/	Volcanoes	5 100 m	
Lithosphere	Landslides	5 - 100 M	
_	Deformation		
TAT	Glacier flow		weekly
PROPAGE	Soil moisture		weekly
Cryo- &	Water level change	50 - 500 m	on demand
Hydrosphere	Snow water equivalent		seasonal
	Ice structure Change		seasonal
	Ocean Currents		weekly
Global	Digital Terrain and surface model	20 - 50 m	yearly

Monitoring of Dynamic Earth Processes

Tandem-L: A proposal for an innovative radar mission for monitoring Earth dynamic processes

Motivation for a Joint Mission

- ✓ Innovative mission with new techniques and technologies:
 - Digital beamforming with large reflector
 - → Polarimetric SAR interferometry (Pol-InSAR) and Tomography
 - High imaging capacity, dynamic processes monitoring
 - → Formation Flying for 3-D imaging
- Tandem-L concept for fulfilling scientific and application requirements in a most effective way (e.g. estimation of biomass)
- Broader science and applications team with complementary expertise
- ✓ Increasing cooperation between DLR and JAXA in Earth observation
- ✓ Several commonalities in the German and Japanese Radar programs

Helmholtz Alliance

Remote Sensing and Earth System Dynamics

Helmholtz Alliance: Our Team

Principal Investigator

Scientific Coordinators

Helmholtz Centre for Environmental Research (UFZ), Forschungszentrum Jülich (FZJ), Helmholtz Centre Potsdam (GFZ), Helmholtz Zentrum München (HGMU), Karlsruhe Institute of Technology (KIT), Alfred Wegener Institute for Polar and Marine Research (AWI), Helmholtz Centre for Ocean Research Kiel (GEOMAR), German Aerospace Center (**DLR**), Max Planck Institute for Meteorology (**MPI-M**), Technical University of Munich (**TUM**), Friedrich Schiller University Jena (FSU), University of Innsbruck, Forest Stewardship Council International (FSC), Swiss Federal Institute of Technology Zürich (ETH Zürich), Potsdam Institute of Climate Research (PIK), University of Potsdam, Ludwig-Maximilians-Universität München (LMU), Federal Institute for Geosciences and Natural Resources (**BGR**), Philipps-University Marburg (**LCRS**), University Hamburg (KlimaCampus)

Prof. Dr. Alberto Moreira

Prof. Dr. Irena Hajnsek DLR - Institut für Hochfrequenztechnik und Radarsysteme

Prof. Dr. Andreas Huth (Deputy) UFZ - Helmholtz Centre for Environmental Research

The Golden Age for Spaceborne SAR I

Gold Mine, Kori Kollo, Bolivia

