ハイパースペクトルデータ等の 高度利用に係る研究開発プロジェクト

(次世代地球観測衛星利用基盤技術の研究開発)

ALOS-3 利用ワークショップ

ERSDAC

財団法人資源・環境観測解析センター

秋葉原コンベンションセンター March 25, 2010

経済産業省による地球観測センサ開発

経済産業省の次世代地球観測衛星プロジェクト

経済産業省のハイパースペクトルへの取り組み

- ●ハイパースペクトルデータの利用 ⇒ ERSDAC * ASTERの能力・性能を凌駕する先端的なセンサデータを用いて、石油資源等の 遠隔探知能力を向上させる ◇有利な条件での鉱区取得、より効率的な探鉱等に資する情報取得により、石油 資源等の安定供給を図る
 - *衛星データの新たな利用分野・利用産業を振興する。(農業・林業・環境分野を選定) ◇農作物の品質や生育状況などの把握による農業経営の高度化 ◇森林分類の高精度化・病害虫被害の把握などによる林業経営の高度化 ◇沿岸環境モニタリングによる水産経営の高度化
- ●ハイパースペクトルセンサ等の開発 ⇒ NEDO/JAROS/NEC *高い波長分解能/空間分解能による識別能力の向上を可能とするハイパースペクト ル/マルチスペクトルセンサの開発により、宇宙を活用した安心・安全で豊かな社会の実現を目指す社会的ニーズに対応
- ●センサの校正・データ処理等の開発 ⇒ (METI公募中)
- * ハイパースペクトルセンサを活用するために不可欠なセンサ校正技術、得られた データの処理技術と地上処理システム等の検討、同センサを有効に活用する上で 解決すべき課題の抽出を行い、今後開発する地上データ処理システムに資する

次世代地球観測衛星利用基盤技術研究の方向性

ALOS-3ワークショップ 2010年3月25日 秋葉原コンベンションホール

①リモートセンシングの情報源

鉱物等は固有のスペクトル特徴/吸収帯を持つ

岩石を構成する鉱物,中でも,熱水などで形成される粘土鉱物や炭酸塩鉱物は,この図のように 特徴的な吸収領域を示す。リモートセンシングは, この情報を資源探査のための地質/岩質情報とし て利用する。

Clay minerals zone

ERS-4 ERS-7 ERS-8

734-2

[CLAY MINERALS]

ERS-5

TM-5

ロフィライト

粘土鉱物

(Al. (SieO20)(OH).

DIS-1 ERS-2 (

M-17M-27M-3 TM-4

②スペクトル吸収特徴から鉱物を識別 スペクトル吸収帯を既知として鉱物種類を識別する

H21年度研究の一例

FieldSpecによる,決定係数マップ

大崎では, FieldSpecによる2007, 2008, 2009年に共通推定式が得られた。

ALOS-3ワークショップ 2010年3月25日 秋葉原コンベンションホール

対象地域:宮城県大崎、山形県酒田

ライン分光放射計によるスペクトルの連続測定

決定係数マップの時系列(目的変数:タンパク含有率)

ライン分光放射計

決定係数と標準誤差の時系列変化(タンパク含有率とmNDVIの関係)

決定係数は9/14をピーク に緩やかに減少

小麦① ~ 穂水分、LAI、収量、窒素含有率の推定 ~

推定値と実測値の比較

対象地域:西オーストラリア

全ての項目で、重回帰モデルの方がNDSIより決定係数が高かった
穂水分とLAIの推定値は実測値と良く一致したが、収量と窒素含有率のばらつきは大きい

ALOS-3ワークショップ 2010年3月25日 秋葉原コンベンションホール

小麦2

~穂水分とLAI広域分布図の試作~

推定結果の良かった穂水分とLAIの広域推定図

LAI推定図

牧草① ~草種判別、収量推定~

対象地域:北海道江別市

草種分類正解率は、草種で約70%、草型(株型、地下茎型、広葉草本型)で約80%

収量推定

~可消化養分総量分布図~

・草種と収量からTDN(可消化養分総量)が推定可能 +30m分解能では雑語割合を過少評価。ただし、平均収量は大きく変わらなかった

ALOS-3ワークショップ 2010年3月25日 秋葉原コンベンションホール

林業2~樹種分類結果~

分類結果判別効率表

				参照クラス												分類	User's
	料	属	粗	ヒマラヤ スギ	ダイオウ ショウ	ストローブ マツ	テーダ マツ	メタ セコイア	スギ	センペル セコイア	ラクウ ショウ	ヒノキ	アサダ	ケヤキ	モミジ パフウ	ピクセル数	Accurac
分類クラス	マツ	ヒマラヤズギ	ヒマラヤスギ	360	0	0	48	2	717	0	38	162	0	2	0	1329	0.27
		マツ	ダイオウショウ	59	96	207	112	11	184	11	44	179	0	11	45	959	0.10
			ストローブマツ	18	0	212	10	15	46	55	10	2	0	0	5	373	0.56
			テーダマツ	257	5	70	100	21	372	15	117	51	0	1	1	1010	0.09
	スギ	アケボノスギ	メタセコイア	0	0	0	0	421	1	6	92	0	0	16	0	536	0.78
		スギ	スギ	28	0	0	3	10	880	0	24	15	0	0	0	960	0.91
		セコイア	センペルセコイア	2	0	0	0	20	4	158	1	1	0	2	0	188	0.84
		ヌマスギ	ラクウショウ	10	0	0	0	353	36	9	377	0	0	3	0	788	0.47
	ヒノキ	ヒノキ	ヒノキ	39	3	10	26	1	196	2	36	1693	2	15	0	2023	0.83
	カバノキ	アサダ	アサダ	7	0	0	5	1	36	1	24	270	243	384	2	973	0.25
	=v	ケヤキ	ケヤキ	9	1	2	3	0	56	1	4	70	44	594	21	805	0.73
	マンサク	フウ	モミジバフウ	3	12	22	4	5	82	3	8	47	1	260	746	1193	0.62
	未分類			130	39	67	41	213	908	48	180	510	4	166	210	2516	
	参照ピクセル数			922	156	590	352	1073	3518	309	955	3000	294	1454	1030	Overall Accuracy	
	Produce's Accuracy			0.390	0.615	0.359	0.284	0.392	0.250	0.511	0.395	0.564	0.827	0.409	0.724	0.431	

0

・教師間類似度が高かった樹種間で誤分類が見られた ・分類結果は、マツ科を除いで概ね60%以上の正解率だった

等価マルチバンド衛星データ作成①

等価マルチバンド衛星データ作成アルゴリズムの流れ

等価マルチバンド衛星データ作成2

等価マルチ衛星バンド画像: Hyperion⇒Terra/MODIS

等価マルチバンド衛星データ作成③

等価マルチ衛星バンド画像: Terra/MODIS

等価マルチバンド衛星データ作成④

等価マルチ衛星バンド画像: Hyperion+Terra/MODIS

等価マルチバンド衛星データ作成5

等価マルチ衛星バンド画像: Hyperion+Terra/MODIS

