Generating Model Time Series

Dr. Lawrie Rikus Bureau of Meteorology Research Centre, Australia

Abstract:

CEOP NWP MOLTS is generally available in two forms; a time series from the assimilation cycle and a series of longer forecasts initiated from 12UTC each day during the observing period. In-situ data consists of contiguous series of (generally) hourly data. In comparing the model and in-situ data the first decision therefore is which model data to actually use. This paper discusses this problem in the context of a simple investigation of the diurnal behavior of the Bureau of Meteorology's MOLTS data .

Concatenating MOLTS series

* Possible MOLTS netCDF time series •pure analysis **⊸**6 hourly •best model guess for 'reality'? assimilation cycle add in hourly output from model first guess forecast •close to 'reality' •forecast series -concatenate a 24 hour segment from each day •which 24 hours? starting later in forecast – further from 'reality' -different choices sample different phases of model spin-up

An example: diurnal behavior Locations

The ARM Southern Great Plains Site (SGP)
 •data rich region with a full suite of in-situ data.

* The ARM Darwin site

•tropical environment with attendant seasonality and reliance on convection.

 The Western Pacific site
 nominally an oceanic surface in a data sparse region, dominated by satellite data.

* Caxiuna

 land site in data sparse region where model has assimilation 'issues'

Darwin surface pressure

PBL Height for the ARM SGP site

Remarks on the assimilation

Discontinuities around insertion times
 basically result of difference between data and first guess.

•fields dependent on moisture most obvious

- * These could be due to:
 - •imbalances in analysis not allowed by model •result of independent moisture insertion

Iong intervals between data

-e.g. 12 hourly satellite passes in data sparse regions

* Symptomatic of GASP assimilation method minimized in 4DDA type schemes?

Annual Mean Diurnal Series

Mean taken over entire EOP3 year ignores intra-seasonal variability most fields don't show much monthly variation anyway except PRECIPITATION emphasizes systematic problems

- * Note that forecast series are identical for 1 15UTC
- * Beginning of each series is closest to assimilation series
 •less time for model drift
- * End of series 'jumps' back to assimilation
 •jump size depends on drift and phase of diurnal cycle

Caxiuana total water vapour

West Pacific total water vapour

List of variables

☆PBL Height

-diagnostic variable not assimilated

*Surface Pressure

-prognostic variable - not assimilated but dependent on T and Φ

***Surface Latent Heating**

-diagnostic variable - not assimilated

***Surface Sensible Heating**

diagnostic variable - not assimilated

Potential Temperature at 10m

-diagnostic variable with strong dependence on assimilated T.

Total water vapour

-based on a prognostic variable strongly modified by assimilation.

*Precipitation

strongly dependent on model fields, imbalances due to data insertion and numerics

Summary for Darwin

Summary for Western Pacific site

Conclusions (1)

Model drift needs to be taken into account when comparing MOLTS and in-situ data.

•even 'straight' assimilation data has potential problems

-first guess forecast can have drift

-systematic diurnal variations in data quality and quantity

•series based on forecasts could be worse

-(long lead time series might be better but further from analysis)

* Different time series based on different parts of the forecasts are a useful diagnostic

Conclusions (2)

* Users of the data should have access to a number of different time series.

 need more than assimilation and 12 – 36 hour series on archive.

* These results probably specific to GASP

water vapour assimilation not done well

•4DDA might not show same problems

-but don't bet on it!

-problems with variation in data quantity etc still there

-models always have drift

CEOP IGWCO Joint Meeting Tokyo, 28 Feb - 4 March 2005

Summary for SGP site

0Z 2Z 4Z 6Z 8Z 10Z 12Z 14Z 16Z 18Z 20Z 22Z

P933 ----- P630 ----- F327 ----- For

Time [UTC]

32.4

Ass -

02 22 42 62 82 102 122 142 162 182 202 222 Time [UTC]

Ass _____ P933 _____ P630 _____ P327 _____ Por

Summary for Caxiuana

Time [UTC]

P933 ----- P630 ----- P327 ----- Por

Ass -

CEOP IGWCO Joint Meeting Tokyo, 28 Feb - 4 March 2005

As 6

Time [UTC]

- F933 ----- F430 ----- F327 ----- For

