

An Overview of the IGOS Coastal Theme Joint CEOP/IGWCO Meeting

1 March 2005 Tokyo, Japan

Coastal Theme Co-Chairs:

Dr. Paul M. DiGiacomo Jet Propulsion Laboratory

Prof. Liana Talaue-McManus University of Miami

Goal of IGOS Coastal Theme:

Develop a strategy for integrated global observations that will provide improved understanding of earth system variability and change in the coastal zone, with a particular emphasis on the land-sea-air interface.

Objectives:

- Specify coastal user information needs and observation requirements
- Evaluate existing/planned capabilities and identify gaps & continuity needs
- *Establish* a framework to integrate observations across the land-sea-air interface in support of coastal research and improved coastal management
- *Stimulate & facilitate* coordination & collaboration among diverse groups/organizations

Chairs:	AFFILIATION	COUNTRY
Paul DiGiacomo	NASA-JPL/ CEOS	USA
Liana Talaue McManus	UNIV MIAMI/ IGBP-IHDP LOICZ (Chair)	USA
CEOS representatives:		
Daniel DeLisle	CSA/ CEOS	CANADA
Hiroshi Kawamura	JAXA/ CEOS	JAPAN
Peter Regner	ESA/ CEOS	ITALY
Shailesh Nayak	ISRO/ CEOS	INDIA
Andreas Nuemann	DLR/ CEOS	GERMANY
Eric Bayler	NOAA/ CEOS	USA
Michael Hales	NOAA/ CEOS	USA
"User" representatives:		
Robert Christian	E. CAROLINA UNIV/ C-GTOS (Chair)	USA
Tom Malone	OCEAN.US/ GOOS-COOP (Co-Chair)	USA
Thorkild Aarup	IOC/ GOOS-COOP	FRANCE
Julie Hall	NIWA/ GOOS-COOP/ IGBP-IMBER (Chair)	NEW ZEALAND
Arthur Dahl	UNEP/ IGOS CORAL REEF SUBTHEME (Chair)	SWITZERLAND
Victor Camacho-Ibarra	UNIVERSIDAD-ABC/ IGBP-IHDP LOICZ	MEXICO
Sin-Iti Iwasaki	NRI FOR EARTH SCIENCE & PREVENTION	JAPAN
Nicole Lenôtre	BRGM	FRANCE

Expected Benefits of IGOS Coastal Theme

- Identify gaps in observations and reduce unnecessary duplication
- **Strengthen** the linkage between *in situ* and space-based observations, integrated with watershed-ocean models, for coastal research and management applications
- **Stimulate** building of long-term coastal data sets
- Assist in the design and implementation of the coastal components of GOOS and GTOS
- Establish priorities for research & development projects to improve the operational elements of observing systems and other programmes
- **Support** user needs through improved products and services
- Cross-cutting links w/IGOS Water Cycle, Ocean, Geohazards, Carbon Themes

Key Milestones to date

- Jan. 2003: *Coastal Theme* Workshop #1 in Washington, D.C.
- June 2003: Approval of *Coastal Theme* proposal at IGOS-P-10 meeting
- Nov. 2003: Coastal Theme Workshop #2 in Hamilton, New Zealand
- Feb. 2004: Presentation at CEOS-SIT-13 and IGOS International Workshop
- Feb. 2004: Coastal Theme Workshop #3 in Paris, France
- May 2004: Presentation on Coastal Theme at CEOS-SIT-14 and IGOS-P-11
- July 2004: Presentation on Coastal Theme at COSPAR meeting in Paris, France
- Nov. 2004: Tentative Approval of Coastal Theme Report by IGOS-P/CEOS-SIT

IGOS COASTAL THEME: PRIORITY ISSUES

Coastal Human Populations

- Coastal Hazards
- Coastal Development & Urbanization
- **Coastal Ecosystems**
 - Hydrological & Biogeochemical Cycles
 - Ecosystem Health & Productivity
 - Coral Reef Subtheme

IGOS	GEOSS
COASTAL THEME	THRUSTS
USER ISSUES	CLIMATE VARIABILITY & CHANGE
Coastal hazards	Disasters
Coastal development & urbanization	Human Health & Agriculture; energy management
Ecosystem health & productivity	Ecosystem & biodiversity
Hydrological & biogeochemical cycles	Water cycle & weather thrusts

Targeted User Groups

- Regional & global environmental assessments, agencies, accords & conventions
- Advisory & regulatory agencies
- National governments
- Research communities
- Commercial organizations

Coastal Observing Requirements

Geophysical:

ocean winds, waves, sea surface height, currents, salinity, temperature, discharge, precipitation, ice cover;

Biological and Biogeochemical:

pigments, nutrients, particulate and dissolved matter, aerosol properties, slicks and spills, fluorescence, optical properties, O_2 and pCO_2 ;

Mapping (Physical, Ecological, and Socio-Economic):

topography, bathymetry, shoreline position & use, high/low tide lines, habitat types and condition, land cover/use, reef maps, coastal population assessments/demographics.

Coastal Observing Requirements

Geophysical:

ocean winds, waves, sea surface height, currents, salinity, temperature, discharge, precipitation, ice cover;

Biological and Biogeochemical:

pigments, nutrients, particulate and dissolved matter, aerosol properties, slicks and spills, fluorescence, optical properties, O_2 and pCO_2 ;

Mapping (Physical, Ecological, and Socio-Economic):

topography, bathymetry, shoreline position & use, high/low tide lines, habitat types and condition, land cover/use, reef maps, coastal population assessments/demographics.

=> Existing space observations provide inadequate spatial, temporal and/or spectral resolution and coverage of coastal regions!

Observation	Knowledge Challenges	Resolution Challenges	Continuity Challenges
Geophysical	 Blending SST data streams Measuring salinity remotely Improve SSH measurements measure currents from space Assimilate HF radar data and derive user products Develop SAR algorithms & assess other measurements 	 Extracting higher resolution info from satellite wind sensors Add additional Doppler weather radar & HF radar sites 	 Maintain and expand stream & tide gauge networks Maintain microwave RS capabilities for ice facilitate HF radar transition: research to operational mode
Biological & Biogeo- chemical	 Hyperspectral ocean color Improve bio-optical algorithms Merged chlorophyll products Ocean color/ SAR data relationships with ecology Taxonomic discrimination Improve aerosol characterization 	 Need ocean color observations from geostationary orbit more nutrient measurements Rapid & accurate pollutant/pathogen assays 	•Maintain global multi-spectral ocean color observations for context and climate data records

Observations	Knowledge Challenges	Resolution Challenges	Continuity Challenges
Mapping	 Need a common habitat classification system Spatially explicit socio-economic variables 	 Require high spatial res. hyperspectral imagery for corals and vegetation Improve availability and use of high-res. color and lidar data for physical mapping Access to highest res. DEMs 	 Maintain DMSP-OLS for human population assessments Maintain high-res. multispectral optical imagers for habitat maps
CROSS CUTTING	 Satellite CAL/VAL Standardize & QA/QC <i>in situ</i> obs Adaptive sampling Power/telemetry/ biofouling issues 	 require improved temporal & spatial resolution from satellite sensors Expand coverage of <i>in</i> <i>situ</i> measurements 	 Need to facilitate transition from research to operational satellites Need to maintain and replace <i>in situ</i> assets

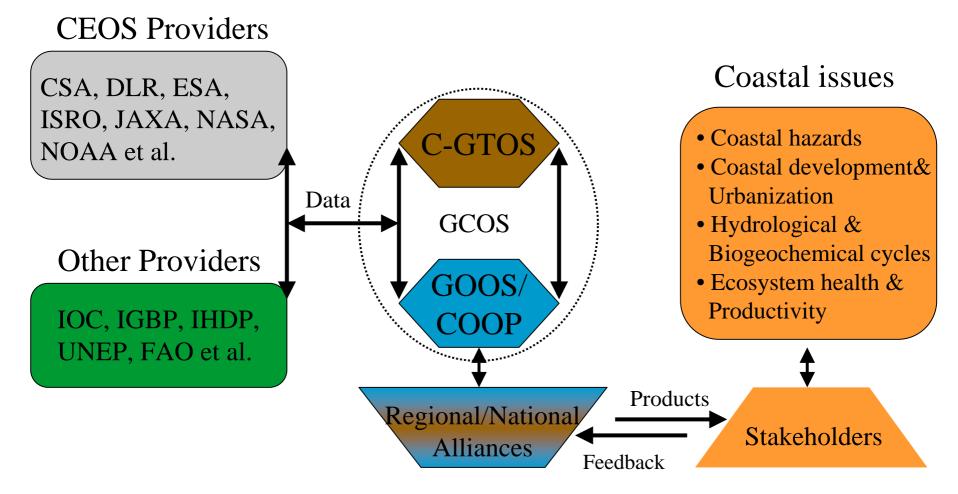
Recommended Space Agency Observing Priorities for Coastal Areas

• **PROVIDE**

- geostationary, hyperspectral sea spectral reflectance observations of coastal areas
- synoptic observations of coastal currents and salinity
- higher resolution/improved coverage for ocean vector winds & SSH
- high spatial and spectral resolution capacity to assess coral reef community changes & vegetation assessments

• IMPROVE

- calibration/validation of measurements in coastal regions
- data management infrastructure (near-real time delivery; climate data records)
- **SUPPORT** development of a Coastal Data Assimilation Experiment (CODAE)
- FACILITATE international efforts to blend high-resolution multi-sensor data products
- **ENSURE** access to highest resolution DEM as soon as possible



Integration Challenges	Integration Strategies
Communication : Biases in disciplines & applications	• Interdisciplinary training programs/workshops > Prioritizing interdisciplinary observation products
 Data Access & Management What data is available? Data sharing across national boundaries Fully "dry" land & Fully "wet" ocean data/models; separation of remote and <i>in situ</i> data 	 Coordinated cataloguing, archiving & distribution of current and historical coastal datasets & metadata; potentially leveraging the GTOS-TEMS database Improve Data Management Infrastructure to store, (re)process and disseminate expanding data streams, incl. (near) real-time & climate data records Modeling & data assimilation => CODAE
 Unique Challenges Mapping the coast Scale dependent attributes People at coastal interface 	 •Tidal monitoring, hydrodynamic models + Vertical datum transformation tool •Long term time series and data continuity •Data integration > Land & sea; humans & ecosystem => Coastal GIS

Institutional Arrangements

Implementation Schedule: Key Elements

2005	• Finalization and printing of Coastal Theme Report.
	 Establishment of Coastal Theme Implementation team
	 Workshops: CODAE; Integration of Socio-Economic data
2005-2007	 Joint oversight mechanism between Coastal modules of
	GOOS and GTOS
	Design CODAE Pilot Project
	 Support development of platforms/sensors with CEOS
2007-2010	Implement CODAE
	 Strengthen socioeconomic component
	 Revision of the Coastal Theme Report after 5 years
2010-2014	Analysis of CODAE results
	 Increasing implementation of coastal observing
	programmes on a regional basis
	• Second revision of the Coastal Theme Report after 10 years

Acknowledgements:

We thank NASA, NOAA, IGBP, IOC/GOOS, FAO/GTOS and UNEP for their ongoing support and contributions.