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1. INTRODUCTION 

To improve the rainfall retrieval accuracy of 
the microwave imagers is particularly important over 
land where the retrieval accuracy is currently unsatis-
factory, especially given the widespread demand from 
various communities for the application of rainfall ob-
servation data to flood alert and water management 
systems.  Over land, the emission algorithm (e.g., 
Wileheit, 1977) is useless because emission from rain 
drops is largely hidden by the warm land surface.  
Hence, a scattering algorithm, using a higher fre-
quency (around 85 GHz), is used for rainfall retrieval 
over land (e.g., Spencer et al. 1983).  When a scat-
tering algorithm is applied over land, variations in the 
observed brightness temperature caused by land 
surface conditions must be distinguished from varia-
tions caused by precipitation.  Land surfaces covered 
by desert sand or fallen snow produce lower bright-
ness temperatures because sand and snow particles 
on the ground scatter microwave radiation at a higher 
frequency.  If this phenomenon is not distinguished 
from scattering by solid precipitation, it leads to false 
estimates of rainfall over desert and snow-covered 
areas. 

In general precipitation retrieval algorithms, 
the rain/no-rain classification (RNC) is applied after 
quality checks and land/ocean classification and be-
fore the actual retrieval.  RNC assigns a deterministic 
flag for “rain” or “no-rain” to observations; then, only 
observations with a “rain” flag are processed in the 
retrieval algorithm.  We propose new rain/no-rain 
classification (RNC) methods that take into account 
multi-scale spatial and temporal variations in land 
surface brightness temperatures.  We therefore 
summarize TMI data observed under no-rain condi-
tions to produce a statistical database of land surface 
brightness temperatures.  In this paper, we propose 
new RNC methods based on this database.  
 
2. DATA 

The standard products of PR and TMI (ver-

sion 5) are used in this study.  The period of analysis 
is from 1998 to 2000, before the change in orbital 
altitude.  Data given by PR products, including sur-
face-type flags from 2A21, rain flag, rain type and 
storm height from 2A23, and the near-surface rain rate 
from 2A25 (Iguchi et al., 2000), were used in this study. 
Data given by TMI, including brightness temperature 
from 1B11, and surface and rain flags from 2A12 
(Kummerow et al., 2001), were also used. 
 
3. RAIN/NO-RAIN CLASSIFICATION METHOD 
3.1. RNC Method of GPROF 

RNC method over land for GPROF Version5 
(Goddard profiling algorithm), which is the standard 
algorithm for TMI, is explained.  First, the existence of 
scattering was assessed.  The observed brightness 
temperature of 85 V (denoted as TB (85 V)) is com-
pared with the estimated TB (85 V) without the scat-
tering effects of precipitation (hereafter, TB*(85 V)); 
the difference is calculated as SI=TB*(85 V)-TB (85 V), 
where SI is an abbreviation of Scattering Index.  In 
the case of GPROF, TB*(85 V) is simply set at the 
observed TB (22 V).  When SI is larger than 8 [K], the 
observation is classified as “scattering”. Otherwise, it 
is classified as “no scattering” (Fig. 1). 

In the second step, desert and 
snow-covered regions are removed from the “scatter-
ing” data by the use of lower frequency observations.  
To detect desert regions, polarization differences in 
the brightness temperature at 19 GHz, TB (19 P)=TB 
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Fig. 1. Schematic of RNC methods in GPROF and
methods proposed in this study 
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(19 V)-TB (19 H) are utilized (P indicates “polariza-
tion”).  The principle of the detection is that TB (19 P) 
for desert is large because there is less volume scat-
tering by vegetation.  In contrast, 22 V is used to 
detect fallen snow.  On the principle that physical 
temperatures and brightness temperatures are low 
when the land surface is covered by snow, data with a 
low TB (22 V) is judged as “scattering by fallen snow” 
which means “no rain”.  
 
3.2. RNC Methods Proposed by This Study 

Our proposed RNC methods also calculate 
SI=TB*(85 V)-TB (85 V). While GPROF estimates 
B*(85 V) using observed brightness temperature at 
lower frequency we use a statistical database to de-
termine TB*(85 V). 

We focused on quasi-simultaneous obser-
vations by PR and TMI to select brightness tempera-
ture data under no precipitation conditions.  As 
shown in Fig. 2, PR observations, the center of which 
are in a TMI footprint in the case of 85 GHz, are used 
as references for TMI observations.  When all the PR 
observations within a TMI footprint have a “no rain” or 
“rain possible” flag, the TMI observation is judged to 
be under a no-rain condition.  TMI brightness tem-
perature data observed under no-rain conditions are 
summarized in the database with resolutions of one 
month and 1 ° ×1 °  (latitude-longitude).  The aver-
age and standard deviation of TB (85 V) are calculated 
to represent the distribution and they are stored in the 
database.  In addition, the coefficients of the linear 
regression lines between TB (85 V) and TB (22 V) are 
stored in the database. 

We propose two RNC methods (M1 and 
M2) for real-time use and two RNC methods (M1+ and 
M2+) for post-processing.  M1 and M1+ refer to the 
average µ  and standard deviation σ  from the 
corresponding grid of the database.  TB*(85 V) is set 
at µ  and the threshold for SI is set at k0 ×σ , 
where k0 is a constant in time and space.  M2 refers 
to the linear regression line between TB (85 V) and TB 
(22 V) as shown in equation (1) from the correspond-
ing grid of the database.  

TB (85 V)no-rain=a+b ×TB (22 V)no-rain (1) 
The observed TB (22 V) is substituted into equation 
(1) and TB*(85 V) is found as shown in equation (2).  

TB (85 V)*=a+b ×TB (22 V)obs  (2) 
The threshold of SI is set at k0 × eσ , where eσ  is 
the standard deviation of the residuals of the regres-
sion.  In an evaluation of one month in 2000, a data-
base for the same month in 1998 and 1999 was used 

in M1 and M2, while a database for the same month in 
2000 was used in M1+ and M2+.  M1+ and M2+ 
cannot be applied in real-time use and is tried here to 
provide a comparison with M1 and M2, respectively.  
Our proposed methods do not require screening for 
desert and snow cover, and thus require only one step 
for “rain” or “no-rain” classification using SI (Fig. 1) 
 
4. EVALUATION OF RNC 

In the same way, to separate no-rain TMI 
observations to produce the database described in 
section 3.2, the RNC for the TMI footprint (85 GHz) is 
determined by PR. Combinations of RNC results are 
categorized by A to D (A---“rain” by PR and “rain” by 
TMI.  B---“rain” by PR and “no-rain” by TMI.  C--- 
“no-rain” by PR and “rain” by TMI”.  D--- “no-rain” by 
PR and “no-rain” by TMI).  In the evaluation, the fol-
lowing three indices were calculated. 

RTDO＝(Number of occurrences in A)/{(Number of 
occurrences in A)+(Number of occurrences in B)} 
RTDA＝(Total amount of rain rate in A)/{(Total amount 
of rain rate in A)+ (Total amount of rain rate in B)} 
RFAO＝(Number of occurrences in C)/{(Number of 
occurrences in C)+(Number of occurrences in D)} 

where RTDO, RTDA, and RFAO are abbreviations for 
the ratio of true detection (occurrence base), ratio of 
true detection (amount base), and ratio of false alarms 
(occurrence base), respectively.  The “rain rate” used 
to calculate RTDA is the averaged “near-surface rain 
rate” given in the standard product 2A25 of PR to the 
TMI footprint (85 GHz).  Each RNC is evaluated only 
when the surface flags for both PR and TMI are “land”.  
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Fig. 2. Match-up between PR and TMI. Gray PR
pixels provide references for TMI observations.  



5. COMPARISON OF METHODS 
5.1. General Comparison 

Evaluation indices for all the TMI observa-
tions in 2000 are compared for M1, M2, M1+, M2+, 
and GPROF in Fig. 3.  The ideal results are maxi-
mum RTDO (RTDA)=1 and minimum RFAO=0. Gen-
erally, these two purposes are not accomplished at 
once, because the distribution of TB under “no-rain” 
condition and that under “rain” condition are over-
lapped. When RTDO increases, RFAO decreases and 
vice versa.  The RTDO, RTDA, and RFAO for 
GPROF are 59%, 80%, and 0.85%, respectively. To 
realize as small a RFAO as GPROF, k0 must be set to 
2.8 and 3.5 for M1 and M2, respectively. The RTDO is 
57% and 63% for M1 and M2, and the RTDA is 81% 
and 86% for M1 and M2, respectively, in this case. 
GPROF is superior to M1 in terms of the RTDO, but 
M1 is superior to GPROF in terms of the RTDA.  
There is little difference in the RTDO (RTDA) for M1 
and M1+ (M2 and M2+) for the same k0; however, M1+ 
(M2+) produced a smaller RFAO than M1 (M2). 
 
5.2. Comparison between M1 and M1+: Effects of 
Interannual Variation 

The RFAO for M1 is much larger than that 
of M1+ because of interannual variation in the distri-
bution of “no-rain” brightness temperatures for present 
and past data.  When the threshold of the TB for M1 
is higher than that for M1+, the RFAO and RTDO for 
M1 are larger.  Conversely, a lower threshold for M1 
results in a small RFAO and RTDO for M1 compared 
with M1+.  Both cases can happen as a result of 
interannual variation, but the increase in the RFAO 
with a larger threshold is much greater than the de-
crease in the RFAO with a smaller threshold because 
the “no-rain” probability density function is an in-
creasing function of the TB around the threshold.  
Unless the interannual variation has significant bias, 
the RFAO for the total evaluation is larger for M1 than 
for M1+.  In contrast, the “rain” probability density 
function can be an increasing or decreasing function 
around the threshold.  Therefore, both the increase in 
the RTDO with a higher threshold, and its decrease 
with a lower threshold are almost cancelled.  Con-
sequently, the difference in the RTDO between M1 
and M1+ is not large.  As above, M1 is inferior to M1+ 
due to the interannual variations of land surface 
brightness temperatures. 
 
5.3. Comparison between M1 and M2: Effects of Di-
urnal Variations 

The difference of accuracies between M1 
and M2 is due to diurnal variations in the RTDA and 
RFAO (Fig. 4).  For M1, both the RFAO are much 
higher at night than in the daytime.  In other words, at 
night, M1 judges a larger number of observations as 
“rain” than M2 and GPROF.  “No-rain” brightness 
temperatures are lower at night due to diurnal varia-
tions in the physical temperature of the land surface; 
thus, the constant threshold for the TB produces a 
higher RFAO at night.  These artificial diurnal varia-
tions in RTDA and RFAO disappeared in M2 by 

Fig. 4. Relationship between local time and
RTDA/RFAO for M1, M2, and GPROF. 

Fig. 3. Evaluations of RNC methods (M1, M1+,
M2, M2+, and GPROF) for the total test. The ab-
scissa is RFAO. The ordinate is (a) RTDO and (b)
RTDA.



changing TB* (85 V) within a month.  The difference 
between M1 and M2 can be explained as above. 
 
5.4. Comparison between M2 and GPROF: Detection 
of Precipitation over Desert and Snow-Covered Areas 

The distribution maps of the RTDA and 
RFAO for GPROF (without desert/snow screening), 
GPROF (with desert/snow screening) and M2 are 
shown in Fig. 5. Without the screening process, the 
RFAO for GPROF is quite high for desert and 
snow-covered regions, while the RTDA is satisfactory 
for all areas.  In contrast, the RFAO for M2 is low, 
even for desert and snow-covered regions. This is 
because the database referred to by M2 has informa-
tion on when and where scattering occurs as a result 
of desert and snow cover.  To decrease the RFAO in 
desert and snow-covered areas, GPROF has to use a 
screening process.  After screening is applied, the 
RFAO is almost zero for desert and snow-covered 
areas, but the screening process also decreases the 
RTDA severely in these areas.  For example, the 
RTDA for GPROF is low for the Sahara desert, inland 
areas of the Australian Continent, the Middle East, and 
the Tibetan Plateau compared with that of M2.  The 
difference between GPROF and M2 in the accuracy of 
the RNC mainly comes from these regions.  

 
6. SUMMARY 

To produce a consistent database under no 
rain conditions, space-borne precipitation radar is 
essential.  Without TRMM-like satellites, such a da-
tabase cannot be produced globally.  Data from a 

two-year period were used to produce the database in 
this study, but this period is not long enough to remove 
sampling bias.  If we used data from a longer period 
for the construction of database, the accuracy of the 
database could be further improved.  An expanded 
database would also partly compensate for differences 
between M1 and M1+ (M2 and M2+).  For GPM ob-
servations, a database could be produced using 
TRMM observations over six years.  
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