SGLI Research Product: Evapotranspiration Index (ETID) Algorithm

■Significance of evapotranspiration index products

- Evapotranspiration is an important parameter for hydrological water resources
- In the agricultural field, there is a strong relationship between evapotranspiration and crop growth and yield (right figure), so water demand is traditionally calculated from evapotranspiration.
- If evapotranspiration can be calculated using SGLI, which has a high frequency (it can be observed once a month even during the rainy season) and has a resolution of 250 m in practice, it will be of great social significance because it can be used to predict crop yield fluctuations around the world and measure the effects of irrigation

■Overview of ET Estimation Methods

(1)Reference evapotranspiration (Penman-Monteith) ... Evapotranspiration from grass land with a well-moist, healthy plant height of 12 cm and an albedo of 0.23

$$\mathrm{ET}_{o} = \frac{0.408\Delta(R_{n}-G) + \gamma \frac{900}{T_{mean} + 273} u_{2_day}(e_{s}-e_{a})}{\Delta + \gamma(1+0.34 \cdot u_{2_day})}$$

(2)Evapotranspiration index

... What percentage of the standard evapotranspiration is evaporated? (Depends on conditions such as land cover)

 $ET_{index} = C_{adj} \times \frac{T_s(dry) - T_s(act)}{T_s(dry) - T_s(wet)}$ (3) Evapotranspiration = (1) \times (2) $ET = ET_0 \times ET_{index}$

data.

Relationship between actual evapoteranspiration and yield in wheat fields

About Evapotranspiration Index (ETID) Product Output and QA Flags

✓ Reasonable results have been obtained with high ET and ETidx in places with abundant vegetation.

- Basically, it is a design that can be used without using QA flags. ٠
- Mask Bit02, Bit03, Bit05 for demanding quality ٠

 \rightarrow Correction by water balance model using precipitation data is applied in Kanto area.

4 0.8 ⊖

0.6 ×

- 0.2

0.0

Evapotranspiration Index (ETID) Algorithm Flow

■ Implementation of the ET algorithm

Calculation flow

- output : **Evapotranspiration index** (ETidx) , **Evapotranspiration** (ET) (Reference evapotranspiration (ETo) can be calculated from the above two.)
- Temporal resolution : 8days, half-month, 1month
- Spatial resolution : 250m in Japan, 5km in global
- Calculation frequency: Activated every 8 days/half-month/month, with input from the current day plus the preceding and following 8 days (total of 17 days)

Output	Input data	Data source	Spatial resolution (TILE / Global)
1)ETo	Solar radiation	SGLI	250m / 1/24deg.
	wind speed	GANAL	0.5 deg.
	temperature	GANAL	0.5 deg.
	humidity	GANAL	0.5 deg.
	altitude(DEM)	ASTGTM2	250m / 1/24deg.
	Surface pressure	Calculated from DEM	250m / 1/24deg.
②ETidx	LST	SGLI	250m / 1/24deg.
	NDVI	SGLI	250m / 1/24deg.
	Snow Cover	SGLI	250m / 1/24deg.
	wind speed	GANAL	0.5 deg.
	altitude(DEM)	ASTGTM2	250m / 1/24deg.
Water Balance Correction	precipitation	GSMaP	0.5 deg.
3ET	ETo, ETidx	-	250m / 1/24deg.