






## The mission of ALOS-2



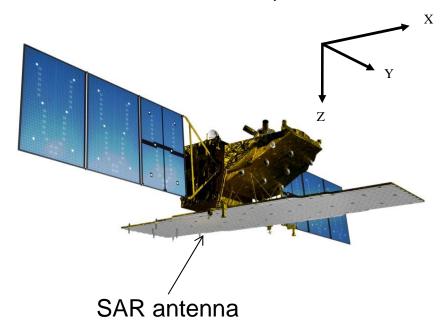
- Advanced Land Observing Satellite-2(ALOS-2) is the post ALOS
   PALSAR mission (PALSAR is the L-band SAR onboard ALOS)
- ALOS-2 is an L-band SAR (PALSAR-2) satellite planned to be launched in 2013
- The main objection of ALOS-2 is as follows,
  - Land management
  - Resource management
  - Resource exploration
  - Disaster monitoring
- In order to meet the requirements, ALOS-2 observes higher resolution, better sensitivity and higher image quality than PALSAR.



# The overview of ALOS-2 ALSS-2



#### **ALOS-2 satellite parameters**


Orbit type : Sun-synchronous

Launch : 2013

Altitude : 628km +/- 500m(for reference orbit)

Revisit time : 14days

: 12:00 +/- 15min LSDN



#### **PALSAR-2 (Mission Sensor)**

- L-band Synthetic Aperture Radar
- Active Phased Array Antenna type two dimensions scan (range and azimuth)
- Antenna size : 3m(El) x 10m(Az)
- Bandwidth: 14 to 84MHz
- Peak transmit Power: 5100W
- Observation swath: 25km to 490km.
- Resolution : Range 3m to 100m

Azimuth 1m to 100m



# Specification of PALSAR-2 ALSS-2



|              |       | Spotlight         | Ultra Fine | High sensitive | Fine  | ScanSAR<br>nominal |       | ScanSAR<br>wide |
|--------------|-------|-------------------|------------|----------------|-------|--------------------|-------|-----------------|
| Bandy        | width | 84MHz             | 84MHz      | 42MHz          | 28MHz | 14MHz              | 28MHz | 14MHz           |
| Resolution   |       | Rg×Az:<br>3×1m    | 3m         | 6m             | 10m   | 100m               |       | 60m             |
| Swath        |       | Rg×Az:<br>25×25km | 50km       | 50km           | 70km  | 350km<br>5scan     |       | 490km<br>7can   |
| Polarization |       | SP                | SP/DP      | SP/DP/FP/CP    |       | SP/DP              |       |                 |
| NESZ         |       | -24dB             | -24dB      | -28dB          | -26dB | -26dB              | -23dB | -23dB           |
| S/A          | Rg    | 25dB              | 25dB       | 23dB           | 25dB  | 25dB               |       | 20dB            |
|              | Az    | 20dB              | 25dB       | 20dB           | 23dB  | 20dB               |       | 20dB            |

SP: HH or VV or HV, DP: HH+HV or VV+VH, FP: HH+HV+VH+VV, CP: Compact pol (Experimental mode)

The each observation mode will be used for ...

**Spotlight**: Emergency Observation

Ultra Fine: nominal observation to collect the basemap for InSAR.

High sensitive: flood observation.

Fine: same as PALSAR observation.

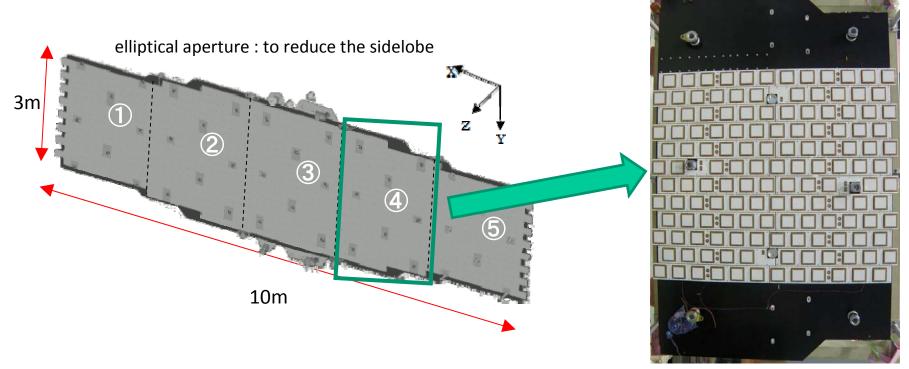
ScanSAR nominal (28MHz bandwidth): ScanSAR-ScanSAR InSAR.

ScanSAR wide: ship detection.

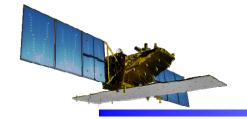


#### **New techniques**




- High power and efficiency device
  - to get high quality image (better NESZ)
  - GaN HEMT ⇒ the first flight for satellite in the world.
- Dual receive antenna system
  - to get wide swath (low PRF)
  - SAR antenna is consisted from 5 electric panel.
  - full aperture for transmission and divided antenna for receiving
- Chirp modulation
  - to get high quality image (better S/A)
  - Up/Down and Phase modulation to distinguish the pulses
- New data compression algorithm
  - updated BAQ algorythm

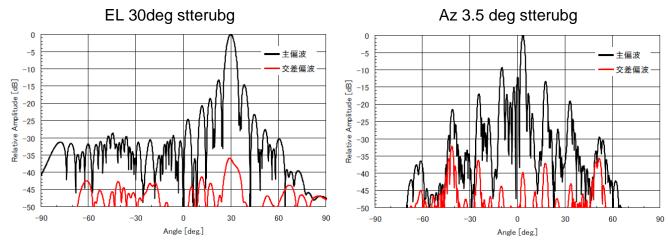



## The Engineering Models



- The antenna Engineering Model (EM)
  - the size for antenna EM is half of one electric panel.




The structure is one electric panel size, however the only half quantity of antenna radiation elements are mounted.



### The Engineering Models



- The interface between antenna elements and the components mounted on antenna was confirmed.
  - mounted components are transmission and receive module(TRM), power supply for TRM(MPSU) and controll unit (CDU) etc.
- The analized radiation antenna pattern using EM of antenna elements was good result,



 The realistic radiation antenna pattern (antenna EM size) will be measured in this week.



#### The future schedule



- The Critical Design Review for ALOS-2 was completer last week.
- The Proto Fright models will be manufactured.

| Calendar<br>Year | 2008 | 2009        | 2010        | 2011                  | 2012  | 2013   |
|------------------|------|-------------|-------------|-----------------------|-------|--------|
| Milestone        |      |             |             |                       |       | Launch |
| ALOS-2           |      | SDR Phase-B | PDR Phase-C | CDR                   | ase-D |        |
|                  |      |             |             | 28 <sup>th</sup> ISTS |       |        |

CAL/VAL: Calibration of PALSAR-2 SAR imaging and applications (Sigma-SAR update) High level product (Ortho, Slope, InSAR-DEM)

### Application:

Forest monitoring (REDD+, Illegal Logging)
Disaster monitoring (DinSAR, Change Detection, Oil spill, subsidence, earthquake, volcano)
Wind speed measurements (Coastal field)
Ionospheric monitoring
Cryospheric observation
Coastal line observation

RA programs (RA-4, July 2012, Node is not available)



## Schedule

```
L+0~L+2: Initial Check(i.e., launch Aug 2013)
L+2~L+5: Initial Calibration
L+5~: Operation Start (i.e., Jan. 2014)
```

### Conclusion

- ALOS-2 in preparation for 2013 launch.
- •ALOS-2 CDR has been successfully conducted on June 2 2011.
- •Basic observation Plan needs to be prepared. Collaboration with InSAR research groups and REDD+ users.
- •L1.1 or higher is the main products for distribution.