

K&C Phase 3 – Brief project essentials

PALSAR Intensities and Coherence for Forest Cover and Forest Change Mapping and Biomass Estimation

Christian Thiel et al. Friedrich-Schiller-University, Jena

Science Team meeting #18 – Phase 3
JAXA RESTEC HQ, Kamiya-cho/Tokyo, Nov. 07-09, 2012

Area of Interest

- Central Siberia: 92°- 104°E & 54°- 60°N
- □ Special focus on:
 - ◆ Several forest inventory sites

Support to JAXA's global forest mapping effort

Ground truth data

- □ Sites in Central Siberia
- ☐ Growing stock volume from 1995
- □ Several tens of forest stands per sample site
- ☐ Raster Data, 12.5 m x 12.5 m

Deliverables

- MS 1: Forest biomass retrieval using POLSAR data
- MS 2: Forest biomass retrieval using INSAR coherence and backscatter
- ☐ MS 3: Forest biomass retrieval using multitemporal ScanSAR data
- ☐ MS 4: Forest cover and forest cover change mapping

Progress on MS 2: Forest biomass retrieval using INSAR coherence and backscatter

Impact of Tree Species on PALSAR INSAR Coherence over Siberian Forest at frozen and unfrozen Conditions

Science Team meeting #18 – Nov. 07-09, 2012

Motivation

Frozen conditions

Unfrozen conditions

Magnitude of interferometric coherence vs. GSV for the site Primorsky East

What causes the spread at unfrozen conditions? Do tree species play a role?

SAR data set

Chunsky N	Chunsky E	Primorsky	Bolshe	Shestakovsky	Nizhne-	Irbeisky	Hrebtovsky
T475/F1150	T473/F1150	T466/F1110	T481/F1140	Sitestakovsky	Udinsky	Housky	THEOLOTSKY
(Track/Frame)	30dec06	18jan07	28dec06	T0463/F1130	T0471/F1100	T0478/F1100	T0468/F1190
	14feb07	05mar07	12feb07	13jan07	11jan07		06jan07
20jun07	02jul07	21jul07	15aug07	28feb07	26feb07	8	21feb07
05aug07	17aug07	05sep07	30sep07	16jul07	14jul07		09jul07
20sep07	02oct07	21oct07		31aug07	Ac.,	10aug07	24aug07
3 (05)	17nov07			16oct07	14oct07		09oct07
05nov07				16jan08		10nov07	09jan08
21dec07			31dec07	02mar08	29feb08	26dec07	24feb08
05feb08	02jan08	21jan08	15feb08	17apr08		10feb08	11jul08
22mar08	17feb08			18jul08	16jul08	27jun08	26aug08
07may08				02sep08	31aug08	12aug08	
22jun08				18jan09	16jan09	28dec08	11jan09
07aug08	04jul08		02jul08	05mar09	03mar09	12feb09	26feb09
	19aug08		17aug08	21jul09		30jun09	14jul09
	04jan09		02jan09	05sep09		15aug09	29aug09
	19feb09		17feb09	21oct09		30sep09	14oct09

• PALSAR L-band (1,27 GHz) data

• 87 acquisitions, mode: FBS *FBD*

• FBS: HH (28 MHz), FBD; HH/HV (14 MHz)

• Off-nadir angle 34,3°

Some Key Facts Impacting SAR data

- Very pronounced seasonality long freezing periods during winter
- During freezing, environmental conditions are very stable:
 - No soil moisture changes, no growth etc.
 - Very low temporal decorrelation at open areas (even for large temporal baselines)
- During freezing, backscatter from forest reduced
- Frozen trees → deeper penetration
- Coherence acquired during freezing correlates with forest biomass

Impact of Perpendicular Baseline

Frozen conditions (winter period)

Impact of Perpendicular Baseline

Unfrozen conditions (summer period)

Summary of all observations

• = average; T = standard deviation; – = minimum/maximum; w = winter; s = summer; 1,2,3 = Δ cycle

Summary of all observations

Summary of all observations

Standard deviation of coherence magnitude for dense forest – all sites.

Investigation of Impact of Species on Coherence

- Only image pairs from consecutive cycles were employed
- The perpendicular baseline varied between 50 m and 700 m for FBD data and between 50 m and 1,700 m for FBS data (38 interferograms)
- All analyses were conducted on forest stand level
- Stand selection: dominating tree species covers at least 80%, GSV = 200-300 m³/ha
- 4,500 forest samples (one sample = one forest stand covered by one interferogram)

Impact of Species: Results

Frozen conditions

Unfrozen conditions

Magnitude of interferometric coherence vs. GSV for the site Primorsky East

Impact of Species: Results

Frozen conditions

Unfrozen conditions

Magnitude of interferometric coherence vs. GSV for the site Primorsky East

Impact of Species: Results

Mean coherence over dense forest separated by tree species at frozen and unfrozen conditions – all sites.

Impact of Species: Results Summary

Deviation of tree species specific magnitude of coherence from average – all sites.

Interpretation and Discussion

- In general, differing tree species can be accompanied by specific forest structure and environmental conditions (undergrowth, water consumption, interception, wind prone etc.) → differing temporal decorrelation
- Geometric properties of trees (crown shape, alignment of tree components) and forest structure affect attenuation and the distribution of the major scatterers → differing volumetric decorrelation

Interpretation and Discussion

- In general, differing tree species can be accompanied by specific forest structure and environmental conditions (undergrowth, water consumption, interception, wind prone etc.) → differing temporal decorrelation
- Geometric properties of trees (crown shape, alignment of tree components) and forest structure affect attenuation and the distribution of the major scatterers → differing volumetric decorrelation
- Spatiotemporal variability of environmental conditions during the growing season (precipitation, soil moisture change, growth etc.) result in increased spread (inter and intra species)
- At frozen and calm conditions, tree species specific temporal decorrelation is minor, and...
- ...geometric properties are of decreased importance, as the amount of scattering within the canopy is also decreased

Summary and Conclusions

- Very low impact of tree species on coherence at frozen conditions
- At unfrozen conditions the impact is increased (in particular for fir and larch)
- At unfrozen conditions increased intra-species variance of coherence most likely caused by spatiotemporal variable environmental conditions

Unfrozen conditions