The Global Terrestrial Observing System and

Terrestrial Carbon Observations (TCO)

Alos meeting Tokyo 1-2 november 2001

Jeff Tschirley GTOS Programme director


```
Mission
statement:
```

To provide policy makers, resource managers and researchers with access to the data they need to detect, quantify, locate, understand and warn of changes (especially reductions) in the capacity of terrestrial ecosystems to support sustainable development.

Five issues of global concern:

- 1. changes in land quality
- 2. freshwater resources
- 3. loss of biodiversity
- 4. climate change
- 5. pollution and toxicity

Terrestrial carbon observation project

1. By 2005, demonstrate the capability to estimate annual net land-atmosphere fluxes at a sub-continental scale with an accuracy of +/- 30% globally, and a regional scale (10⁶ km²) over areas selected for specific campaigns with a similar or better accuracy.

2. By 2008, improve both the spatial resolution (10⁶ km² globally) and accuracy (+/- 20%).

3. In each case, produce sink/source maps with the highest spatial resolution enabled by the available satellite-derived and other input products (~ 1 km² or less).

F

GCO

ATE OBSE

GLOB

Dual-constraint approach

Terrestrial carbon balance

Global Hierarchical Observing Strategy (GHOST)

TCO observation requirements

- land cover and use
- biomass, leaf area
- fire
- radiation
- atmospheric column (CO₂, CH₄)
- near surface GHG concentrations
- surface fluxes
- C pools and changes

TCO products for initial period (3-5 years)

Category	Products (georeferenced)	Spatial extent	Temporal frequency
Land cover	Land cover types and change	Global, Continental	Annual, seasonal, 5 yr.
Land cover	Continuous fields	Global,	Annual
Biomass	Biomass density	Region, Biome-specific	Annual
Seasonal growth	Leaf area index	Region, site-specific campaigns, Global	Sub-seasonal
Seasonal growth	Growing season duration	Region, site-specific campaigns, Global	Annual
Fires	Burned area	Continental, Global	Annual
Fires	Burned biomass	Continental, Global	Annual
Solar radiation	SW solar irradiance	Global	Daily
Surface atmos. fluxes	CO2 flux, tower measurements	Network of sites	Sub-daily
Atmospheric CO2	Trace gas concentration	Network of sites	Weekly (or less)
Ecosystem	NPP	Region, site-specific campaigns, Continental Global	Annual
Ecosystem	NEP	Region site-specific campaigns, Continental, Global	Annual

TCO Satellite-based data requirements Specifications of TCO variables for CEOS - SIT¹

VARIABLE	OPTIMIZED				THRESHOLD			
	Hor Res	Cycle (d.m.y)	Timelines (d.m.y)	Accuracy	Hor Res	Cycle (d.m.y)	Timelines (d.m.y)	Accuracy
	galalalalalalalala		Target vari	ables				la a a a a a a a a a a
Albedo satellite	1 km	10d	30d	+2%	4km	30d	60d	+7%
Carbon dioxide flux (CO2)	Tier 1,2 (100 sites globally)	Continous	Continous	+ 5%	TBD	TBD	TBD	TBD
Radiation – outgoing long wave satellite	50km	204	1m	+2%	100km	60d	3m	+ 10%
Land cover	0.1km	1y	3m	50 classes	1km	10y	1y	20
Land use	0.1km	1y	бm	>100 classes	1km	10y	1y	5 classes
Net Ecosystem productivity (NEP)	1km	1d	annually	+10% for annual budget	1km	1y	3у	+20%
Net Primary Productivity (NPP) satellite	0.1km	1d	10d	+10%	1km	10d	1y	+30%
Canopy conductance maximum	1km	10y	1y	+10%	1km	20y	2y	+20%
Biogeochemical transport from land to oceans	10km	1q	10d	+10%	100km	1y	1y	+30%
Biomass - total	0.1km	1y	3m	+5%	1km	10y	1y	+20%
Dissolved C, N, and P in water (rivers and lakes)	10km	1d	river dependent	+5%	100km	1y	1y	+30%
Dry deposition of NO3, SO4	1km	1m	7d	+10%	50km	1y	1y	+30%
Emissions of CO2, Nox, Sox from combustion of fossil fuels	10km	1m	1y	+10%	country	4y	4y	+20%

¹Based on TOPC recommendations (Corvallis, 1998, annex 6) and subsequent TCO meetings (Ottawa, Lisbon, Durham, Frascati).

Fire-are a¤	0.1km¤	10d¤	1m¤	+10%¤	1km¤	1y¤	3m¤	+20%¤
Fire-intensity [®]	0.1km¤	10d¤	1 m ^{to}	+20%¤	1km¤	1y¤	3m¤	+40%¤
Methane flux (CH4), modelled	0.1km¤	1d¤	бm¤	+15%¤	10km¤	1y¤	1y¤	+30%¤
Ground-water-storage-fluxes¤	Tier-1,2,3,4,-¤	1y¤	Annually¤	1%-of-true- depth¤	Tier-1,2,3,4¤	1y¤	Annually¤	+10%¤
Soil-moisture¤	Tier 1,2,3¤	1d¤	3d¤	+2%¤	Tier 1,2,3¤	5d¤	5d¤	+10%¤
Surface water flow discharge	Tier 1, 2, 3, 4 a	0.01d¤	1d¤	+5%¤	Tier-1,2,3¤	30d¤	30d¤	+20%¤
ගුනුතු කල කිරීම කිරීම කරන	(यास्य यात्रा यात्रा यात्रा यात्र	<u>jalalalaisijalalai</u>	Inputva	riables¤	allanahanan anananan a	galalalagalalala	सुविधियायायायाया	व्युविधायायायायायायाय
Albedo in situ ¤	Tier 1,2,3 ·¤	0.01d-¤	7d-¤	+3%·¤	Tier 1,2,3·¤	0.04d-¤	1m·¤	+5%¤
Precipitation -accumulated¶ (solid¤	1km·¤	0.04d·¤	1d-¤	<+0.1mm·¤	10km·¤	0.05d·¤	1d∙¤	+0.1mm¤
Radiation – fraction of photosynthetically active radiation (FPAR) ²	0.1km¤	10 d∙¤	10 d-¤	+0.05·¤	2km·¤	30 d a	10 d-¤	+0.1¤
Radiation -incoming¶ short-wave satellite¤	50km·¤	10 d∙¤	10 d∙¤	+2%·¤	100km-¤	40 d ∙¤	1m·¤	+7%¤
Radiation-outgoing long- wave¶ in situ =	Tier∙1,2,3·¤	0.01d-¤	1d∙¤	+1%·¤	Tier∙1,2,3·¤	10·miute¶ mean¶ ¤	5d·¤	+2%¤
Relative humidity (atmospheric water content- near the surface)¤	Tier 1,2,3 &¶ weath sta'ns ∞	0.04d·¤	1d∙¤	+1%·¤	Tier 1,2,3 and weather¶ stations¤	0.04d·¤	3d∙¤	+2%¤
Temperature air ¤	Tier 1,2,3 &¶ weath sta'ns¤	0.02d·¤	1d-¤	+0.2C·¤	Tier 1,2,3 and weather¶ stations¤	0.5 d ∙¤	2d∙¤	+0.5C¤
Biomass - above ground	0.1km ¤	1y-¤	3m·¤	+5%·¤	1km [.] ¤	710y-¤	1y-∞	+20%·¤
Land cover a	0.1km·¤	1 yo	3m·¤	50.classes.¤	1km·¤	10 y-¤	1y-¤	20. classes ·¤
Leaf area index (LAI)¤	0.1km·¤	10 d 🛛	10 d-¤	+0.2·¤	1km·¤	10 d 🛱	1y-¤	+1·¤
Net primary productivity (NPP) in situ biomass samplings	Tier 1,2,3 ¤	10 d∙¤	3m·¤	+10%·¤	1km-¤	1y-¤	2m·¤	+10%¤
Peak leaf biomass of nitrogen-fixing plants ¤	Tier·1,2,3·¤	1y-¤	3m∙¤	+5%·¤	Tier∙1,2,3·¤	5y∙¤	1y·∞	+15%¤
Spectral-vegetation-	0.1km·¤	1d∙¤	1d-¤	+1%·¤	2km·¤	1d∙¤	10 d-¤	+3%·¤

* * 0 *

greenness index			1					
Vegetation structure	Tier 1,2,3	1y	6m	+ 5%	Tier 1,2,3	10y	1y	+10%
Soil surface state	Tier 1,2,3,4	1y	бm	+ 5%	Tier 1,2,3,4	10y	1y	+10%
	(ananananananan		Aneillary	y variables		alananananananana		
Aerosols (total column)??or transmissivity measurements?	1 km	1d	10d	TBD	4km	2d	1m	TBD
Aerosols In situ	Tier 1,2,3	continuou s	1d	+5%	Tier 1,2,3	Hourly	5đ	TBD
Radiation -incoming short- wave in situ	Tier 1,2,3	continuou s	1d	+1%	Tier 1,2,3	0.01d	30d	+1%
Radiation - reflected short- wave in situ	Tier 1,2,3	continuou s	ld	+1%	Tier 1,2,3	0.01d	30d	+1%
Snow surface state	10km	1d	2d	6classes	25km	3d	3d	2 classes
Snow water equivalent (SWE) in situ	Tier 1,2,3, surface network	1d	2d	+ 5%	Tier 1,2,3, surface network	30d	3d	+ 15%
Vegetation hydric stress index	0.1 km	0.04d	1d	+10%	4km	1d	2d	+ 20%
Decomposition rate	Tier 1,2,3	30d	30d	+10%	Tier 1,2,3	60d	30d	+15%
Fire type	0.25km	1y	1m	6classes	1 km	Зу	Зm	2classes
			Measure	d variables				
Microwave backscatter	0.01km	1d	1d	+0.2dB	1 km	2d	10d	+0.6dB
Radiation - reflected short- wave satellite (multispectral)	0.01km	1d	ld	TBD	1 km	2d	1m	TBD

"Target, Input, Ancillary, Measured": as defined by GOSSP, Paris, 1997 "Optimized, Threshold" and "Parameters (Horizontal Resolution, Cycle, Timeliness, Accuracy)": as defined by GOSSP, Paris, 1997

Definitions of Variables

(Intended for use with the CEOS database of satellite data requirements)

3

Roles of SAR data in TCO (Cihlar)

Information requirements - most important: Biomass and biomass change (above ground) Land cover and LC change (disturbances,..)

[together: spatial, temporal rates of biomass loss/increase] Wetlands: water level dynamics \rightarrow GHG emission rates (CH4) Freeze/thaw timing \rightarrow phenology

Geographic windows (broadly):

Forests, wetlands, cloudy areas, cold areas with C & seasonal dynamics

Temporal windows (broadly): Wet-dry contrasts, cold/warm contrasts

PALSAR (Cihlar)

Information potential:

PALSAR an important information source for TCO

- Biomass change and biomass in forests
- Land cover change in forested areas
- Wetlands distribution and seasonal dynamics (treed, with shrubs, herbaceous types)

Geographic windows:

- Forest biome
- Areas with rapid land cover change (clearing, afforestation)
- Wetlands (natural, managed e.g. paddies)

PALSAR (Cihlar)

Planning data acquisition:

- Systematic global acquisition essential (in space and time)
- Consider in context of other satellite data acquired (at the same time and previous/follow-on missions)
- Link to *in situ* observation networks
- Tightly inked to research programs (C processes and retrieval algorithms/models)

Specifics (areas, etc.):

- The ALOS analysis (May, 2001) a good starting point
- Need to refine in relation to the above considerations and recent knowledge of PALSAR data capabilities

Important to keep in mind (Cihlar):

- SAR part of a 'system solution' (other sensors + *in situ* obs'ns + models)
 → PALSAR in context of overall TCO system.
- Satellite data acquisition must be coordinated with *in situ* acquisition and with research programs/activities need to plan for this.
- Need products, not (raw) data: product generation, validation and quality control an integral part of satellite mission a challenge for NASDA.
- Ongoing engagement of the scientific community (>>EO community) very important, ALOS should promote this engagement.

TCO next steps

- Complete the TCO implementation plan.
- Engage the key partners (in situ->space, science->policy).
- Rationalise the flux networks.
- Harmonise forest inventories.
- Compile regional land use histories.
- Expedite improved atmospheric concentration measurements.
- Improve tools for studying interaction between top-down and bottom-up approaches.
- Build data archive and analysis centres.

