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A decision tree classification based on the Random Forests approach was used to 
classify the SAR data. The ancillary datasets (described above and below right) were 
used within the classifier to support product generation. Application of the Random 
Forest approach for SAR-based classification was demonstrated previously in 
development of a wetlands map of Alaska using JERS datasets (below left). This was 
the first synoptic wetlands map for Alaska developed from a single remote sensing 
data source (Whitcomb et al 2009). Similar products are under development for 
several hydrologic basins in our NEESPI domain (shown at right).
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Accuracy assessment was based on validation pixels not used for training. Accuracy
varied between 2% and 20% according to class. 

Wetlands Classification from ALOS PALSAR

Figure 1: VIC overview and the 
VIC lake and wetland 
algorithm schematic.  

Land Surface Hydrology Model
• Variable Infiltration Capacity (VIC) Model 
(Liang et al. 1994) 
• Water and energy balance closure
• Macroscale: grid cells range from 10 to 
100 km
• Statistical parameterizations of sub-grid 
variability in soil moisture, land cover
• Lake/wetland model (Bowling, 2002) 
handles changes in lake extent
• Grid cell average water table computed 
as sum of total column soil moisture deficit
• Extended to handle carbon cycling with 
Farquhar photosynthesis, plant respiration, 
and NPP from BETHY (Knorr, 2000)

Sub-grid Variability of Water 
Table and Inundation
• Uses topographic wetness index 
formulation from TOPMODEL 
(Beven and Kirkby, 1979)
• Relates local water table position 
to local topography and the 
average water table depth of the 
region

Methane Model
• Walter and Heimann (2000) with 
modifications described in Walter 
et al (2001a )
• soil methane production, and 
transport of methane by diffusion, 
ebullition, and through plants 
modeled explicitly 
• methane production occurs in the 
anoxic soil from the bottom of the 
soil column to the water table 
• methane production rate 
controlled by soil temperature and 
NPP (both from VIC)
• methane oxidation also taken 
into account

Modeling Approach

Model Framework
•VIC hydrologic model driven by (1) gridded meteorological forcings and (2) 
wetness index distribution from SRTM3 and GTOPO30 DEMs
•VIC produces daily Zwt distribution, Soil T, and NPP
•Distributed Zwt(x,y), SoilT, and NPP drive methane and soil respiration models, 
which produce CH4(x,y,t) and CO2(x,y,t)
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Fig. 1. Our current study domain, circled in panel (a), is the West 
Siberian Lowlands, home to a large portion of the world’s wetlands.  
Panel (b) shows the topographic wetness index across this domain, 
derived from SRTM3 and GTOPO30 DEMs.  Red = low wetness 
index, blue = high wetness index.  Panel (c) overlays the wetland 
delineation of Lehner and Doll (2004).  It can be seen that the spatial 
distribution of wetlands correlates strongly with high values of
wetness index.

Study Domain

Fig. 2. Focus area: Chaya/Bakchar/Iksa watershed.  We are running 
our modeling framework at a resolution of 100km (EASE grid equal-
area polar projection) (grid cells outlined in panel (a)).  Topography 
is supplied by the SRTM 30m UTM DEM.  For comparison with 
simulations, and to calibrating the modeling framework, we have 
classified 12.5m UTM PALSAR imagery from the region (panel (b)),
acquired in the summers of 2006-07.  Classes of particular interest 
are: open water and saturated/inundated land (with emergent 
vegetation) (listed as “wetland” in the legend in panel (b)).  To 
calibrate the water table parameterization, we have selected 4 
regions of interest (ROIs), shown as numbered boxes in panels (a) 
and (b).

Model Calibration

For each of the ROIs in fig. 2, we aggregated the remote sensing classifications up to 2700m resolution, computing the fraction of inundated 12.5m pixels in 
each 2700m “cell”.  Examples of observed inundation at each of the ROIs are shown in the first and third columns of fig. 3, along with acquisition dates.

Before analyzing topography, we first smoothed the DEM with a cutoff wavelength of 2100 m, to reduce noise in the DEM caused by its coarse (1 m) vertical 
resolution and the effects of scattered tree canopies on the DEM.  Then we computed wetness index values at all 30 m pixels of the smoothed DEM.

For each ROI, we aggregated to 2700 m resolution, computing the fraction of 30 m DEM pixels having wetness index κ i > threshold κ t within each 2700 m 
cell, for a range of threshold kt values.  For each κ t value, we evaluated the bias: mean(fraction >= κt) - mean(fraction_inundated).  We then selected the κt
value for which bias was smallest as the “best” estimate for that ROI and date.  Maps of fraction above threshold at each of the ROIs on the same dates as the 
observations are shown in the second and fourth columns of fig. 3.  The strong correspondence between the spatial distributions of simulated and observed 
inundation is evident.
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We are calibrating the modeling framework 
using a combination of in situ and remotely-
sensed observations:

1. Gauged streamflows in sub-basins 
covering 70% of the region, 1950-1970.  
These help constrain the depth of the 
simulated soil column, its drainage 
properties, and the relationship between 
topographic wetness index and water table 
depth.

2. Remotely-sensed observations of 
inundation, derived from Landsat, AMSR-E, 
and PALSAR imagery, 1970s through 2007.  
These help constrain lake drainage and the 
relationship between topographic wetness 
index and water table depth.

3. In situ measurements of CH4 and CO2 
emissions at a small number of locations in 
the domain.  These help constrain carbon 
cycle parameters but due to their scarcity, 
we will need to explore the responses over 
a range of plausible parameter values.

Figure 3.  Simulated and observed inundation from ROIs in Figure 2.

Summary
Changes in greenhouse gas emissions such as methane (CH4) and carbon dioxide (CO2) from high-
latitude wetlands in a warming climate may have important implications for projections of global 
warming, due to the large amounts of carbon stored in high-latitude soils and the high greenhouse 
warming potential of methane.  As much as 1/3 of global natural methane emissions come from high 
latitudes. Emissions of greenhouse gases, especially methane, are sensitive to hydrologic variables such 
as inundation that now can be observed via microwave remote sensing. We are applying a combination 
of large-scale hydrologic/biogeochemical models and remote sensing observations across the West 
Siberian lowlands to estimate soil moisture, inundation, and greenhouse gas fluxes. We have calibrated 
this framework using observed streamflow, inundation products derived from PALSAR and AMSR-E, 
and in situ water table and greenhouse gas emissions observations. 
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