

K&C Phase 4 – Status report

Mapping habitat distribution, vegetation structure and flooding dynamics in the Amazon basin wetlands

Thiago Sanna Freire Silva

Ecosystem Dynamics Observatory Geography Department São Paulo State University (UNESP), Brazil

Science Team meeting #24 Tokyo, Japan, January 29-31, 2018

Project outline and objectives

K&C Initiative

An international science collaboration led by JA

- Make use of the existing PALSAR record and upcoming PALSAR-2 data to derive improved basin-wide maps of wetland habitat and flooding characteristics for the Amazon basin wetlands, explicitly considering inundation patterns and vegetation structural characteristics.
- These improved maps will allow for more accurate regionalizations of carbon dynamics, and offer much needed support for large-scale biodiversity studies and conservation efforts in the Amazon wetlands.

Specific activities

K&C Initiative

An international science collaboration led by JAX

- Mapping habitat/vegetation cover
- Mapping flood duration
- Vegetation structure

LOS

- Vegetation carbon monitoring
- Applications to conservation

Results and significant findings - Habitat/Vegetation Mapping

K&C Initiative

An international science collaboration led by JA

Wetlands Ecol Manage (2015) 23:41–59 DOI 10.1007/s11273-014-9359-1

ORIGINAL PAPER

LOS

Combining ALOS/PALSAR derived vegetation structure and inundation patterns to characterize major vegetation types in the Mamirauá Sustainable Development Reserve, Central Amazon floodplain, Brazil

Jefferson Ferreira-Ferreira · Thiago Sanna Freire Silva · Annia Susin Streher · Adriana Gomes Affonso · Luiz Felipe de Almeida Furtado · Bruce Rider Forsberg · João Valsecchi · Helder Lima Queiroz · Evlyn Márcia Leão de Moraes Novo

Results and significant findings - Habitat/Vegetation Mapping

LOS

K&C Initiative An international science collaboration led by JAXA

Results and significant findings - Habitat/Vegetation Mapping

Multitemporal PALSAR-1 data

•FBS/FBD imagery

•Covering the largest possible hydrological range

•Image segmentation and feature extraction using eCognition (hopefully RSGISIb for now on!)

•Supervised classification using Random Forests

K&C Initiative

An international science collaboration led by JA

ALOS

- •83% accuracy (kappa 0.8)
- •10% Allocation, 5% Quantity Disagreement
- •Low várzea sites are very heterogeneous
- •Difficulty in mapping sparse herbaceous vegetation / bare soil

ALOS An international science collaboration led by JAXA Gurupá/PA Óbidos/PA Manacapuru/AM Tefé/AM Beruri/AM São Paulo de Olivença/AM Legenda Melack & Hess, 2010 Áreas úmidas Elevação < 500m High : 500 Low:0 Progressively expanding to new

- Progressively expanding to new sites "on demand"
- Limited by training/validation data

ALOS

ALOS

Ground training and validation data for large-scale mapping (Oct;Nov 2017)

Legend

PEER_ground_truth

- Forest
- Herbaceous
- Shrub
- Soil
- Water

PALSAR_RHV_GHH_BHH/HV

Google Satellite

ALOS An international science collaboration led by JAXA

Probability of Inundation:

- Stage height (Mamirauá Lake)
- Distance to nearest water body
- Height above the nearest drainage (HAND)

Ferreira-Ferreira et al. (in prep for submission)

ALOS

0.000000 0.200000 0.400000 0.600000 0.800000

Ferreira-Ferreira et al. (in prep for submission)

ALOS An international science collaboration led by JAXA

Levelogger ID	Habita	Flood Habitat duration		Flood duration			Day of flood			Day of ebb		
	mappe	class d mapped le	velogge	rs model dis	agreeme	entlevelogger	rs modeld	isagreemer	nt levelogger	s model d	isagreement	
1	VB	40-105	168	152	19	77	85	-8	245	234	11	
2	VB	125-175	220	212	8	32	37	-5	252	249	3	
3	CH	<40	145	205	-57	90	45	45	235	247	-12	
5	VB	105-125	162	184	-19	79	63	16	241	244	-3	
6	VB	<40	132	141	-8	96	91	5	228	231	-3	
7	VB	175-295	250	212	38	12	37	-25	262	249	13	
8	VA	<40	116	116	-7	101	102	-1	217	225	-8	
9	VB	125-175	129	212	-83	99	37	62	228	249	-21	
10	CV	>295	244	212	32	19	37	-18	263	249	14	

Ferreira-Ferreira et al. (in prep for submission)

Vegetation Structure

ALOS

Sensor	Operation Mode	Observation Start Date	Rainfall(mm)
PALSAR	PLR	30/03/2009	14.9
PALSAR	PLR	15/05/2009	0.2
TerraSAR-X	HH	19/10/2011	Х
RadarSAT	Polarimetric	20/10/2011	Х
PALSAR	FBD (HH-HV)	08/10/2010	0
PALSAR	FBD (HH-HV)	25/10/2010	0
Field work	18 (25m x 25m)	data(18-29/10/2013)	

PALSAR image

45'0"

2°30'0"S

R(HH) B(HV) G(VV)

Graphic OBS vs. PRED and LAI map results from the application of model selected from the datasets: a) PL-FBD

ALOS An international science collaboration led by JAXA

Graphic OBS vs. PRED and LAI map results from the application of model selected from the datasets: b) PL-FBD+TX

Graphic OBS vs. PRED and LAI map results from the application of model selected from the datasets: c) PL-PLR

An international science collaboration led by JAXA

ALOS

Graphic OBS vs. PRED and LAI map results from the application of model selected from the datasets: a) PL-FBD+ RS2

K&C Initiative An international science collaboration led by JAXA ALOS 650 Number of sample (AGB) 600 16 550 (18) R²= 0.88 Predicted AGB [t/ha] logE(Yi) 18 500 RMSEcv (18) = 107.3 450 RMSEcv (16) = 51.5 400 Term (y18) 350 Coef© 300 7.9 (Intercept) 250 PL(HV/HH) -7.7 200 R2C(HV/HH) 11.9 150 TX(HH-dB) 0.5 (16) R²= 0.39 100 50 650 t/ha 0 AGB [t/ha]

b

Graphic OBS vs. PRED and LAI map results from the application of model selected from the datasets: b) MULT

≅0

2 4

8

km

((month:Oct.) Ω (month: Mar.-May.))

Water (month: Mar.-May.)

Confidencie interva (95%)

Graphic OBS vs. PRED and LAI map results from the application of model selected from the datasets: e) RC2(POL)16

Collaborative Developments: wall-to-wall habitat mapping for the Mamirauá Sustainable Development Reserve

K&C Initiative

Developed method applied to produce first wall-to-wall habitat map.

ALOS

Map will be used to guide conservation and sustainable extraction planning in the reserve.

Collaborative Developments: mapping açaí palm expansion

K&C Initiative

An international science collaboration led by JA

 Using the developed methodology to differentiate between monoculture, mixed forest-plantation, and untouched floodplain forest near Belém (PA, Brazil) (collaboration with Madson Freitas and Allistair Campbell)

LOS

Project milestones so far

K&C Initiative

An international science collaboration led by JA

Fine scale maps of land cover and flood recurrence for key areas of the Amazon floodplains, based on FBD data

Working, semi-automated algorithm for classifying land cover and flood duration for large areas of the Amazon basin

Analysis of polarimetric capabilities to predict vegetation structure from PALSAR-2 for selected floodplain sites

Project milestones for 1-yr extension

K&C Initiative

An international science collaboration led by JA

- Derivation of an updated and improved habitat and flooding map for the central Amazon wetlands
- Validation of the basin wide map using high resolution imagery and available ground data
- Comparisons between fine beam and mosaic mapping accuracies

ALOS An international science collaboration led by JAXA

Deliverables for 1-yr extension

- Fine scale habitat and flood duration maps for the Amazon river and main tributaries
- Method to model flood duration from inundation mapping
- Publications:
 - Ferreira-Ferreira et al. (2018). Empirical modeling of flood duration in Amazon floodplain environments based on time-series of ALOS/PALSAR-1 fine beam imagery. To be submitted to Remote Sensing of Environment by March 2018
 - Resende et al. (2018) Tree mortality from flood pulse disturbances in Amazonian floodplain forests: the collateral effects of hydropower production. To be submitted by March 2018, journal not yet determined.
 - Silva et al. (2018) Mapping the expansion of açai palm (Euterpe oleracea) in the lower Amazon using combined PALSAR-1 and Sentinel-1 synthetic aperture radar imagery. To be submitted to the Remote Sensing K&C special issue. Preferred submission on second quarter of 2018.
 - Silva et al. (2018) Mapping fine scale distribution of floodplain habitats for major Amazon Rivers. To be submitted for the Wetlands K&C special issue. Preferred submission on third quarter of 2018.

PALSAR/PALSAR-2 ScanSAR mosaics

We will compare results obtained with the Fine Beam imagery with results obtained using the PALSAR-2 mosacis, to assess if a larger scale / more automated mapping method could be achieved by using the mosaics instead.