Completion of work from Phase 1

- Forest Biophysical Parameter Estimation from InSAR; Determination of Calibrated Coherence
 - InSAR can be used for estimating vegetation height if error sources such as temporal decorrelation can be controlled
 - Present status: completed by demonstrating that temporal decorrelation is a dominant error source
 - Updated data requirement: request to continue InSAR acquisitions as possible
 - Deliverables: algorithms for estimating temporal decorrelation have been presented in K&C meetings, public conferences, and in a paper submitted to RSE

K&C Initiative

An international science collaboration led by JAX.

Paul Siqueira University of Massachusetts, Amherst

Techniqes developed for calibrating the interferometric correlation signal

K&C Initiative

An international science collaboration led by JAXA

• Estimates of temporal correlation made for a variety of scene pairs

ALOS

• Some degree of temporal decorrelation seen in <u>all</u> data. Even one day repeat-pass from SIR-C

Detailed temporal decorrelation study

 Near zero baseline, one day repeat pass from SIR-C (1994) analyzed

ALOS

- National Land Cover Dataset (1992) used to determine target classes
- More than 1 million hectares analyzed

K&C Initiative

An international science collaboration led by JAXA

One-day repeat, zero baseline from SIR-C results

K&C Initiative

An international science collaboration led by JAXA

- Some degree of temporal decorrelation is always present
- Dependent on phenology and weather (rain and wind)

 \mathbf{OS}

Dependent on target type as well (crops: green; forests: blue)

Extensive Work Accomplished over the Harvard Forest

 A concentrated test site was developed for algorithm development

ALOS

- Full waveform lidar collected by LVIS in 2001
- Lidar data, combined with ground validation data, converted to biomass
- Will be imaged this spring by UAVSAR
- Calibration targets to be deployed

K&C Initiative An international science collaboration led by JAXA

ALOS K&C Initiative An international science collaboration led by JAXA **Biomass Estimates from lidar and LHV** Ground validation combined with full waveform lidar moments used to estimate biomass across the LVIS swath Lidar data coregistered with PALSAR SAR/InSAR data in the slant range, on a pixlel-by-pixel basis using lookup tables and simulated SAR image from DEM • Lidar nadir-track compared to radar backscatter. Errors may be due to lidar ground reflection detection and the "random" association of selected biomass sites **RCS** biomass estimates Biomass map derived from full waveform lidar data 160 300 140 100 20(100 Riomass (Molha 100 200 300 400 500 600 700 800 900 1000 1100 $\sigma^{o}_{hv} = -22.5 + 3.0 \text{ In AGB}$

Extension Phase Proposal: LiDAR/SAR/InSAR data fusion using a segmentation approach

A SEGMENTATION APPROACH FOR COMBINING RADAR BACKSCATTER, INSAR AND LIDAR MEASUREMENTS TO DETERMINE VEGETATION 3D STRUCTURE AND BIOMASS FROM SPACE

SUBMITTED IN RESPONSE TO NASA RESEARCH ANNOUNCEMENT NNH08ZDA001N-TE TERRESTRIAL ECOLOGY

K&C Initiative

An international science collaboration led by JAX.

Paul Siqueira University of Massachusetts, Amherst

Project Objectives

K&C Initiative

An international science collaboration led by JAX.

- In the absence of a Tandem mission (excepting TanDEM-X and possibly TanDEM-L), temporal decorrelation will dominate the interferometric signature. Hence, an alternative methodology will be necessary.
- Develop a robust method of estimating forest biophysical parameters over geographically extensive regions
- Utilize SAR/InSAR data for their mapping capabilities

- Utilzie Lidar for its 'direct' measurement of vegetatation structure
- Perform an error analysis for varying SAR/InSAR configurations

Segmentation Approach

 Backscatter power, texture and polarimetry utilzed in segmentation

ALOS

- Aggregate regionsof like resonse via an image segmentation
- Utilize coincident Lidar on a scene by scene basis to assign values of interest to the segmented SAR image

K&C Initiative

An international science collaboration led by JAX

Optical plus fullwaveform lidar (LVIS) coverage

SAR backscatter image

Segmented SAR

Project Team (for proposal)

K&C Initiative

An international science collaboration led by JAXA

• Paul Siqueira (PI; algorithms and processing)

- Bruce Chapman (co-I, gadfly; algorithm development and extension of work to mosaicked products)
- Kathleen Bergen (co-I; ecology applications and science lead for 3D structure requirements)
- Richard Lucas (collaborator; segmentation, forest applications, and ground validation for Queensland sites)
- William Munger (collaborator; provide Harvard forest ground validation inputs)
- Kyle McDonald (collaborator; data distribution & interface to MEaSUREs task)
- Scott Hensley (collaborator; UAVSAR overflights and processing)

Project Plan

K&C Initiative

An international science collaboration led by JAXA

- Split into 5 technical threads
 - Algorithm development
 - Feature selection

- Segmentation development
- Error assessments
- ↓Injune/Queensland dataset development
- Harvard Forest dataset development
- **VASA Carbon Cycle and Ecosystems dataset development**
 - Other sites located in California, the East Coast, and in Central America
 - More sites are welcome
- Large-scale swath dataset development
 - Coincident with Injune/Queensland, the Harvard Forest and the Carbon Cycle and Ecosystems (DESDynl) sites

Project Plan

• Algorithm development over selected test sites

Combine SAR, LiDAR and InSAR data

LOS

- Segmentation of orthorectified and slope corrected SAR/InSAR data
- Full waveform Lidar data (LVIS) used to determine statistics over a subset of segmented regions
- Regions that are not covered by Lidar that belong to simiar SAR/InSAR class types will be assigned lidar waveform moments measured for regions that are covered by the lidar.

K&C Initiative

An international science collaboration led by JAXA

Accuracy Assessment made over selected test sites

- "best" accuracy to be determined by including all available data types
- Study performed to understand the impact on error metrics of reducing the total observation vector (e.g. quad-pol vs. dual-pol vs. single-pol).

Repeat-pass UAVSAR data processed to

- Cross-calibrate ALOS/PALSAR data
- Provide interferomtric observables of coherence and height that will be useful for intepretting data and expanding its extent
- Algorithms and error assessment extended over regional scales (~9 PALSAR scenes)

✤ Include ICESAT waveform data.

 Algorithms and error assessment extended over large scale regions, similar to ALOS/PALSAR masks

Project Map (current)

K&C Initiative

An international science collaboration led by JAXA

• Two primary regions for initial work in first year

- To be expanded to additional NASA Carbon Cycle and Ecosystem sites in second year
- Regional assessments to be based on initail regions and CCE sites
- Additional sites of interest (lidar data and ground validation required)

Time Schedule

K&C Initiative An international science collaboration led by JAXA

- Project Threads broken into tasks discretized into 3 month pieces
- Project anticipated to formally start in April, 2009.

ALOS

Project Milestones		Year 1				Year 2				Year 3			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
Project Start and Reviews	\sim			<	\sim				\geq			<hr/>	
Thread 1: Algorithm Development													
Dual-pol segmentation algorithm													
Quad-pol segmentation algorithm													
Interferometric segmentation algorithm													
Specification of vegetation structural characteristics													
Analysis of ICESAT data													
Error formulation and analysis													
Thread 2: Injune, Queensland dataset													
Aggregation of data resources													
Application of segmentation algorithms													
Evaluation of ICESAT data over the region													
Error analysis													
Thread 3: Harvad Forest, MA dataset													
Derivation of biomass from available LVIS data													
Application of segmentation algorithms													
Estimation of vegetation characteristics													
Evaluation of ICESAT data over the region													
Error analysis													
UAVSAR data collection													
Thread 4: NASA CCE dataset development													
Participation in data collections													
Comparison of updated LVIS/UAVSAR data with existing data													
Application of segmentation algorithms													
Evaluation of ICESAT data over the CCE sites													
Error analysis													
Thread 5: Inclusion of large-scale data from ALOS/PALSAR													
Identification of relevant data													
Application of segmentation algorithms													
Error analysis													
Evaluation of ICESAT and land classification data over the region													
Final Summary and Report													

Data Requirements

• Differentiation between data requirements and data desires

• Data Requirements

- - Quad-pol benefits by a deeper observation vector, yet suffers from smaller swath and steep incidence angle

K&C Initiative

An international science collaboration led by JAX

• Dual-pol more limited observations but has larger swath and better incidence angles

Would like to ask that the current agreement with JAXA be continued

Data Desires

LOS

- Coincident ALOS/PALSAR observations with UAVSAR overflights
- Concentrated time series data over selected sites

• **Processing Requirements**

- ✓ We prefer level 1.0 data; Utilize gamma software for processing
- We would be interested in sites from KC team that has lidar, PALSAR (at least FBD) and ground validation data available for use.

Definition of Deliverables

K&C Initiative

An international science collaboration led by JAXA

- Ground validation data and algorithms to be publically made available
- Harvard and Queenslad results to be presented at K&C meeting; preferably KC13 next January (2010)
- Additional NASA CCE test sites by KC15 (2011)

LOS

• Application of algorithms to regional scales KC17 (2012)?