Results of Initial Calibration and Validation of PRISM and AVNIR-2

Takeo Tadono

Earth Observation Research Center (EORC)
Japan Aerospace Exploration Agency (JAXA)

Phone: +81-29-868-2472, E-mail: tadono.takeo@jaxa.jp

陸域観測技術衛星「だいち」 Advanced Land Observing Satellite (ALOS)

History

- ✓ Jan. 24, 2006: ALOS was launched
- ✓ Jan. 28, 2006: Critical Phase completed
 - Successful deployments and normal control
- ✓ Feb. 14-17, 2006: First images acquisition
- May 15, 2006: Initial Check-out Phase completed
- ✓ Oct. 23, 2006: Initial Cal/Val Phase completed / Normal Observation Phase started
 - All bus & mission systems operational and in good conditions

Orbit and Attitude Determinations

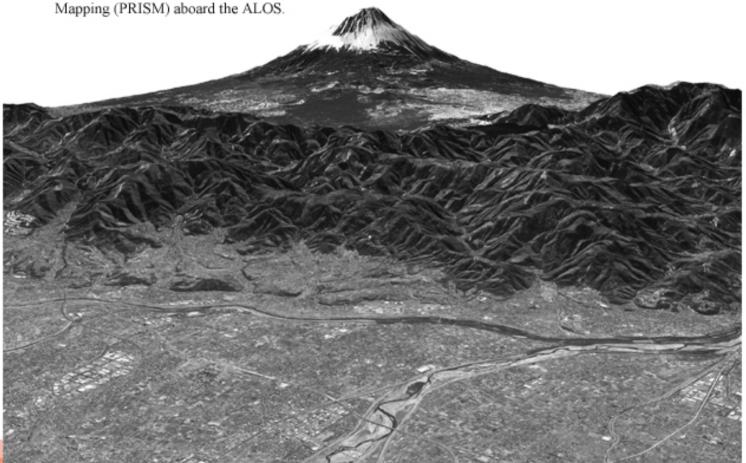
- Precise Orbit Determination by GUTS: From March 27th, 2006
 - Very well, about 10cm orbit determined
- ✓ Large geometric error (about 7-8km in AT direction)
 - □ 1 second time error > Onboard firmware updated on Sep. 22
- Onboard Precise Attitude Determination (ATT3)
 - □ 0.1 sec time error > Corrected on Sep. 29, and now working well
- Off-line Precise Position and Geolocation Determination System (PPDS)
 - Started on July 9 > under evaluation

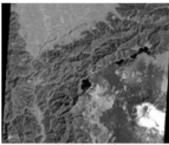
PRISM & AVNIR-2

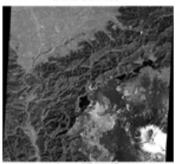
- ✓ PRISM: Brighter noise (Blooming), and Block noise by JPEG compression
- ✓ Absolute geometric accuracies are not sufficient.
- ✓ AVNIR-2's mirror drive degrades pointing stability of PRISM.

Mission Data (May 15 - Sep. 30)

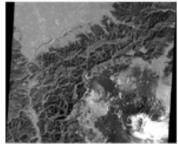
✓ PRISM: 180,000 scenes; AVNIR-2: 70,000 scenes; and PALSAR: 150,000 scenes






陸域観測技術衛星「だいち」(ALOS)パンクロマチック立体視センサ(PRISM)が 観測した富士山

View of Mt. Fuji, Japan observed by the Panchromatic Remote-sensing Instrument for Stereo



後方視画像

直下視画像

前方视画像

DJAXA

©JAX

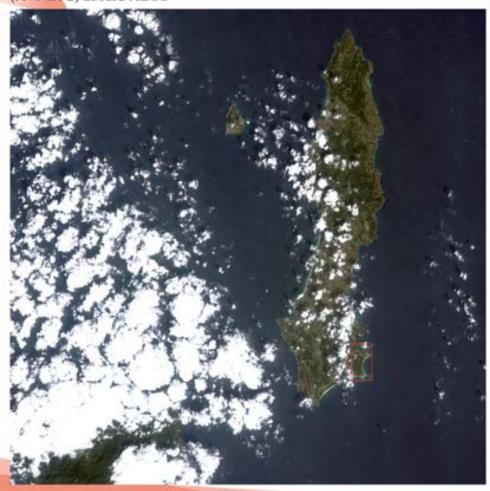
EORC Earth Observation Research Center

Observation date: 10:30am, February 14th, 2006 (Tue) Data dawn/link to EOC: 11:00pm, February 14th, 2006

陸域観測技術衛星「だいち」(ALOS)パンクロマチック立体視センサ (PRISM)が観測した静岡県清水港

View of Shimizu Port, Japan observed by the Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) aboard the ALOS.

Observation date: 10:30am, February 14th, 2006 (Tue) Data dawn/link to EOC: 11:00pm, February 14th, 2006



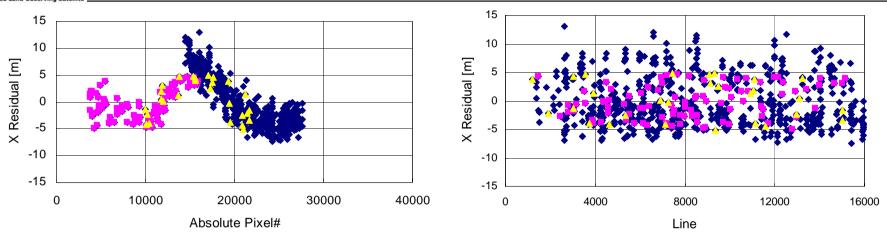
陸域観測技術衛星「だいち」(ALOS)高性能可視近赤外放射計2型(AVNIR-2)が観測した種子島 View of Tanegashima Island, Kagoshima Pref., Japan observed by the Advanced Visible and Near Infrared Radiometer type 2 (AVNIR-2) aboard ALOS

①大型ロケット発射場

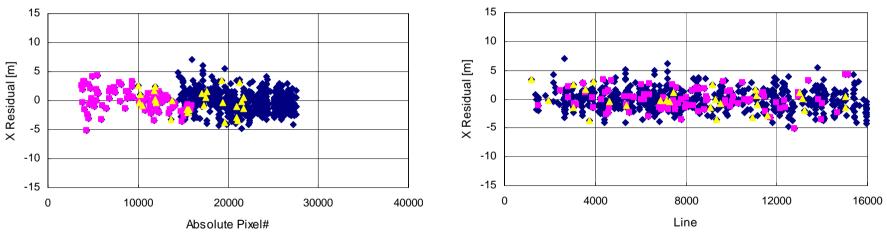
2006年2月17日観測 ©JAXA EORC Earth Observation Research Center

Observation and D/L: 10:50am, February 17th, 2006 (Fri)

Results of Initial Cal/Val


- ✓ Geometry: PRISM 6m, AVNIR-2 14m(1 σ), if 1GCP is available within a scene.
 - Sensor (Pointing) alignments of PRISM is still evaluating
- ✓ Radiometry: Almost sufficient

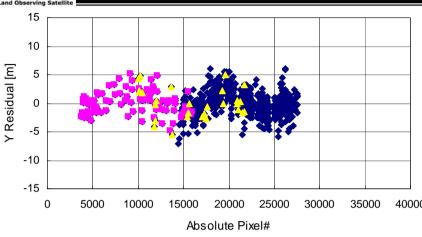
Except for AVNIR-2 Band 4, and stripe noise of PRISM

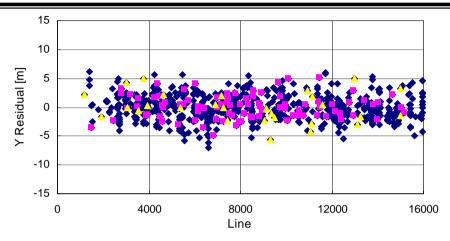

Standard Product	Target Accuracy	Results as of Oct. 23, 2006
PRISM 1B2	Radiometry Relative Accuracy $5\% (1\sigma)$ Absolute Accuracy $10\% (1\sigma)$ Geometry Absolute Accuracy (without GCP) $6.0m (3\sigma)$ for Nadir-looking radiometer with the Precise Pointing Geolocation Determination System (PPDS)	Radiometry Relative Accuracy less than 1.2% (3DN) → Post processing is considering Absolute Accuracy less than 6.2% Geometry Absolute Accuracy → Sensor (Pointing) alignment Error in RMS Pixel (X) Line (Y) Forward 13m 64m Nadir 17m 34m Backward 32m 32m Relative Accuracy (with 1GCP/scene, 1 σ) 3 radiometers 4m 6m
AVNIR-2 1B2	Radiometry Relative Accuracy 5% (1 σ) Absolute Accuracy 10% (1 σ) Geometry Absolute Accuracy without GCP 283.7m (3 σ) Relative Accuracy with GCP 7.7m (3 σ) at 0 degree pointing angle	Radiometry Relative Accuracy less than 0.4% (1DN) Absolute Accuracy 6.2% (B1-3), 15.8% (B4) Geometry (-41.5 to +41.5 deg pointing) Absolute Accuracy → Sensor alignment updated on Dec. Pixel (X) Line (Y) RMS 520m 370m → 200m Relative Accuracy (1 σ) 14m 6m

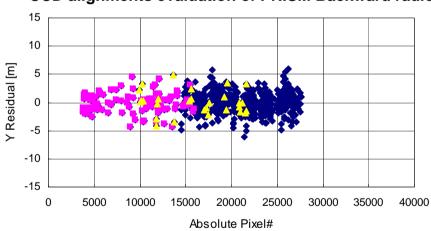
Geometric Cal #1 - PRISM CCD Alignments

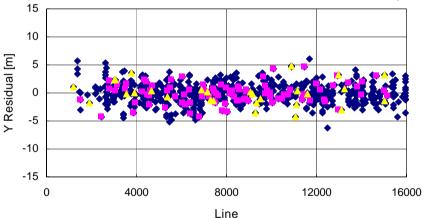
CCD alignments evaluation of PRISM Backward radiometer (Pink: CCD#1-3, Yellow: CCD#3-5, Blue: CCD#4-6).

After correction of relative CCD alignments (orientation residual in X direction).

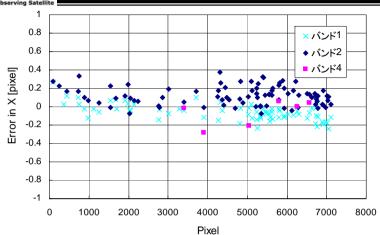

PRISM Relative CCD alignments estimation:

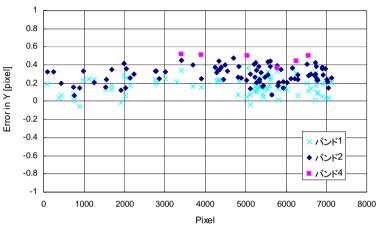

- External orientation technique with 943GCPs and 15 stereo pair images
- ✓ Almost of residuals of orientation are within +/-5m after correction.
- Unevaluated CCDs have been observed on Sep. 20 and 23



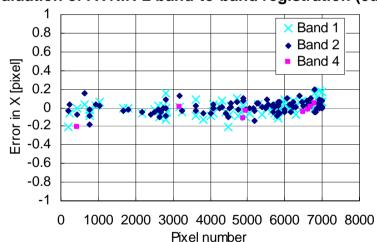

Geometric Cal #1 - PRISM CCD Alignments

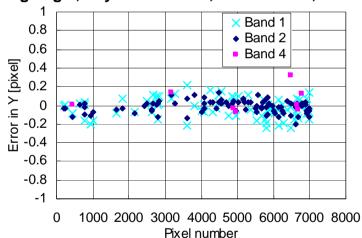
CCD alignments evaluation of PRISM Backward radiometer (Pink: CCD#1-3, Yellow: CCD#3-5, Blue: CCD#4-6).


After correction of relative CCD alignments (orientation residual in Y direction).


PRISM relative CCD alignments estimation and correction:

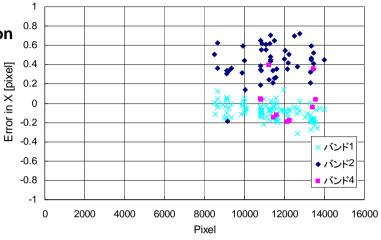
- External orientation technique with 943GCPs and 15 stereo pair images
- ✓ Almost of residuals of orientation are within +/-5m after correction.
- Unevaluated CCDs have been observed on Sep. 20 and 23

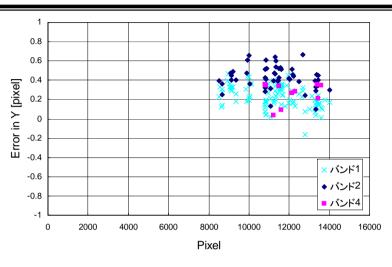



Geometric Cal #2 - AVNIR-2 Band-to-Band Registration

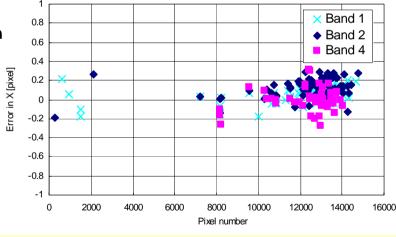
Evaluation of AVNIR-2 band-to-band registration (0deg. pointing angle, Sky blue: Band1, Blue: Band2, Pink: Band4).

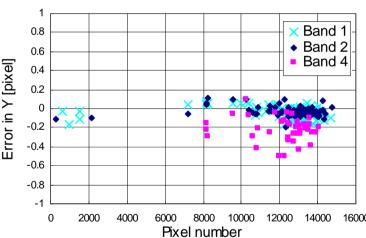
After correction of the registration (as of Sep. 26).


AVNIR-2 Band-to-Band registration estimation and correction:


- √ 19 scenes, various pointing angles (-41.5 to +41.5deg.), Band 3 is base image.
- Automatic image matching technique (least square matching)
- Parameters were modified in geometric sensor model

search Center


Geometric Cal #2 - AVNIR-2 Band-to-Band Registration


Before correction Tomakomai -41.5deg. (May 4, 2006)

After correction

AVNIR-2 band-to-band registration estimation and correction:

- √ 19 scenes, various pointing angles (-41.5 to +41.5deg.), Band 3 is base image.
- Automatic image matching technique (least square matching)
 - Parameters were modified in geometric sensor model

SGeometric Cal #3 - Geometric Correction Accuracy

- External orientation using L1B1, orbit and attitude information
- > Initial orientation residual is corresponds to geometric accuracy of L1B2 except for mapping error (resampling).
- ✓ It is difficult to remove the terrain and height effects of GCPs in L1B2
 - > Ortho-rectified image should be used to evaluate the geometric accuracy of products

Sensor	Sample number	RMSE in X (m)	RMSE in Y (m)	Scene-averaged STDEV of error in X (m)	Scene-averaged STDEV of error in Y (m)
PRISM Forward	5 scene, 83 GCP	13	64		
Nadir	6 scene, 292 GCP	17	34	4	6
Backward	5 scene, 83 GCPs	32	32		
AVNIR-2	7 scene, 211 GCP includs -41.5∼+41.5 deg.	520	370	14	6

Results of Geometric accuracy evaluation (as of Oct. 23, 2006)

✓ Relative accuracy: PRISM 4m (X, 1 σ), 6m (Y, 1 σ)

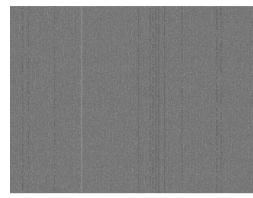
AVNIR-2 14m (X, 1σ), 6m (Y, 1σ)

✓ Absolute accuracy: PRISM > depends on pointing determination

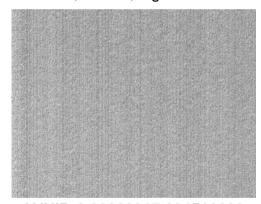
AVNIR-2 520m > 200m (as of Dec. 7, 2006)

→ If one GCP/scene available, above relative accuracies are achieved.

Radiometric Cal #1- AVNIR-2 Relative Accuracy


DN differences between odd and even detectors into dark time

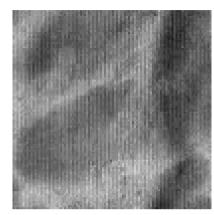
	Ban	nd 1	Bar	nd 2	Band 3		Bar	nd 4
	DN	E-O	DN	E-O	DN	E-O	DN	E-O
Gain 1	0.424	0.282	0.418	-0.385	0.427	-0.533	0.401	-0.549
Gain 2	0.345	0.260	0.345	-0.402	0.382	-0.584	0.314	-0.382
Gain 3	0.200	0.154	0.251	-0.502	0.283	-0.587	0.231	-0.372
Gain 4	0.204	0.004	0.195	-0.468	0.230	-0.340	0.187	-0.322

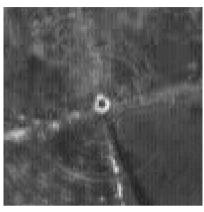

DN differences between odd and even detectors into daytime

	Band 1			Band 2			Band 3			Band 4		
	Input	DN	E-0									
ゲイン1		-			-			_			-	
ゲイン2		-			-			_			-	
ゲイン3	170	0. 122	0. 475	155	0. 092	0. 359	148	0. 098	0. 357	132	0. 109	0. 343
ゲイン4	165	0. 095	0. 714	153	0. 084	0. 174	147	0. 090	0. 351	133	0. 101	0. 056

- ✓ Pixel-to-pixel radiometric variation (difference between odd and even, stripe) is averaged less than one DN in all bands and all gains.
- ✓ Time trend have to monitor in the future

AVNIR-2 20060623 021916050 Band 1, Gain 3, nighttime obs.


AVNIR-2 20060917 034512030 Band 1, Gain 3, daytime obs. over Greenland

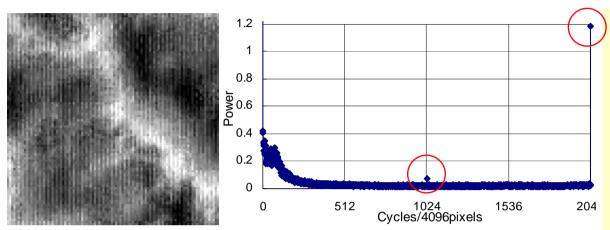


Radiometric Cal #2 - PRISM Relative Accuracy

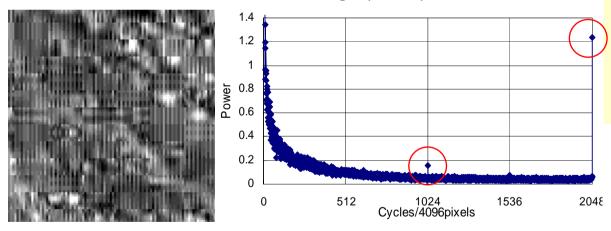
Examples of stripes.

Left: Sahara 060427-B/CCD#5, Right: Ely 060813-B/CCD#4.

This is related to image quality i.e.,


- 1) Stripe noises are appeared sometime, and
- 2) Block noises due to JPEG compression are also appeared.
- 1) Stripes noises depends on
- ✓ Stability of "Optical Black" (OB), which is used in radiometric sensor model as the reference, but one OB in each 22 seconds
- ✓ Evaluation of characteristics of stripes
 - DN average between odd/even detectors
 - □ FFT
- ✓ Difference between odd/even detectors is 1 to 3 DNs
- ✓ Back- and Forward-images are not satisfied

*() is include dummy pixels.


PRISM Scene ID		CCD#		CCD#+1			CCD#+2			CCD#+4		
Ave. DN / Diff. DN (E-O)	Odd	Even	E-O	Odd	Even	E-O	Odd	Even	E-O	Odd	Even	E-O
Sahara 060427 ALPSMB013623255-01B1 (#=3)	(825.08)	(826.47)	+1.39	138.08	137.54	-0.54	137.84	135.46	-2.37	(174.68)	(174.0)	-0.68
Sahara 060427 ALPSMN013623200-01B1 (#=3)	(595.44)	(595.99)	+0.55	134.98	133.78	-1.20	135.77	136.76	+0.99	(215.35)	(214.56)	-0.79
Sahara 060427 ALPSMF013623145-01B1 (#=5)	(142.43)	(142.97)	+0.54	134.87	134.76	-0.11	138.26	136.54	-1.73	(320.36)	(321.79)	+1.43
Ely 060813 ALPSMB029422885-01B1 (#=3)	(805.11)	(807.59)	+2.48	116.80	114.33	-2.47	87.42	86.06	-1.37	(99.62)	(97.44)	-2.18
Ely 060813 ALPSMN029422830-01B1 (#=3)	(569.07)	(569.02)	-0.05	99.59	99.44	-1.15	75.11	74.96	-0.15	(111.11)	(111.97)	+0.86
Ely 060813 ALPSMF029422775-01B1 (#=5)	(99.64)	(102.29)	+2.65	80.82	80.72	-0.10	55.71	57.81	+2.09	(168.55)	(166.78)	-1.77

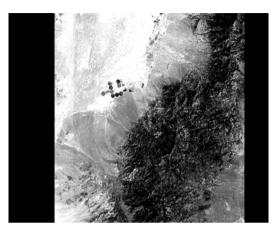
Radiometric Cal #2 - PRISM Relative Accuracy

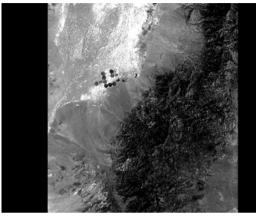
Evaluation of stripe noise by FFT (1B1). Sahara 060427-B/CCD#5, right: power spectral.

Evaluation of stripe noise by FFT (1B1).

Ely 060813-B/CCD#4, right: power spectral.

This is related to image quality i.e.,


- 1) Stripe noises are appeared sometime, and
- 2) Block noises due to JPEG compression are also appeared
- 1) Stripes noises depends on
- ✓ Stability of "Optical Black" (OB), which is used in radiometric sensor model as the reference, but one OB in each 22 seconds
- ✓ Characteristics of stripes
 - DN average between odd/even detectors
 - FFT: 4096 pixels / 4992 pixels are used
- ✓ Large powers are appeared at 2048 and 1024 cycles
 - =Correlations on 1/2 and 1/4 samples
- → 1/2 sample shows stripe noise



Radiometric Cal #3 – PRISM Sensitivity Variation between CCDs

Correction of sensitivity variation between CCDs.

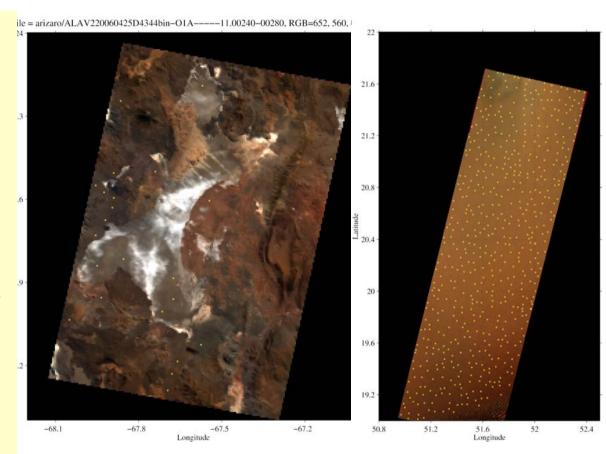
1B1, ALPSMN029422830-O1B1, left: before correction, right: after correction

There are radiometric variations between CCDs in L1B2

- → Radiometric correction is not sufficient
- → Relative sensitivity variation between CCD
- ✓ Characteristic evaluation using overlap pixel (32 pixels)
- ✓ Corrected values estimation for each CCD, each gain and all radiometers.
 - Separate to pixel-to-pixel variation

Correction of sensitivity variation between CCDs.

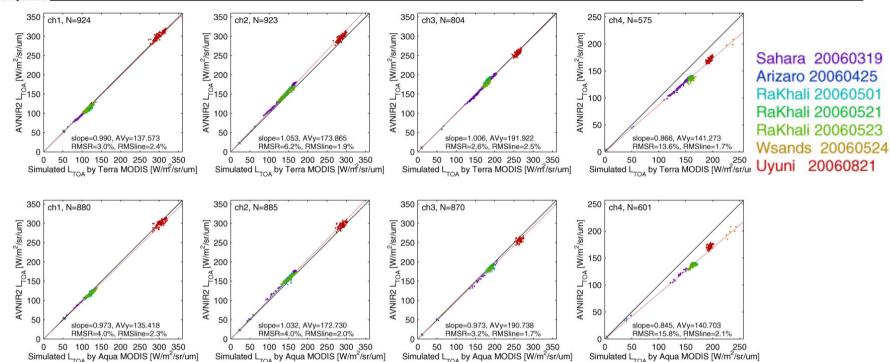
1B1, ALPSMW031652890-O1B1___W, left: before correction, right: after correction



ALES Radiometric Cal #4 - Cross Cal with MODIS

Cross calibration with MODIS onboard TERRA/AQUA satellites over homogeneous targets

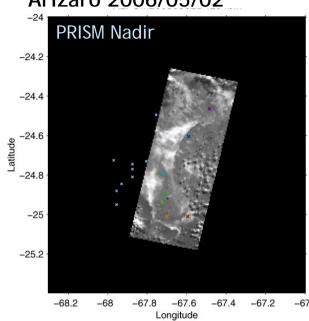
- ✓ Number of evaluation scene can be increase
- ✓ Number of evaluation point can be increase
- ✓ MODIS are calibrating well
- ✓ Comparison of surface reflectance at TOA over stable surfaces
- ✓ Aqua/Terra MODIS 500m resolution
- ✓ AVNIR-2: 500m average, variation <3%
 - □ 06/03/19 Sahara desert
 - □ 06/04/25 Arizaro, Argentine
 - □ 06/05/01 Rab Khali desert
 - □ 06/05/21 Rab Khali desert
 - □ 06/05/23 Rab Khali desert
 - □ 06/05/24 WhiteSands, US
 - □ 06/08/21 Salar de Uyuni

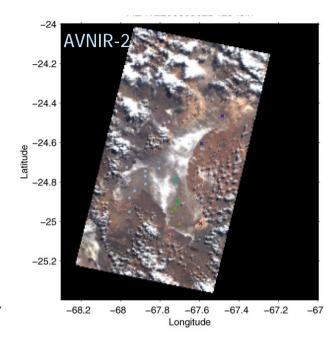

06/04/25 Arizaro, Argentine. **06/05/23** Rab Khali desert. Yellow dots shows evaluation points (variation<3%).

SRadiometric Cal #4 - Cross Cal with MODIS

AVNIR-2		TERRA	/MODIS			AQUA/	MODIS	
Band	Number	Slope	Ave.	RMSR	Number	Slope	Ave.	RMSR
1	924	0.990	137.573	3.0 %	880	0.973	135.418	4.0 %
2	923	1.053	173.865	6.2 %	885	1.032	172.730	4.0 %
3	804	1.006	191.922	2.6 %	870	0.973	190.738	3.2 %
4	575	0.866	141.273	13.6 %	601	0.845	140.703	15.8 %

^{*} Number: number of evaluation points; Slope: reflectance ratio of AVNIR-2/MODIS; Ave: average of AVNIR-2's reflectance (W/m2/str/micro-m); and RMSR: root mean square of residual.





Radiometric Cal #5 - Cross Cal with AVNIR-2

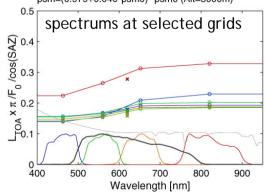
Arizaro 2006/05/02

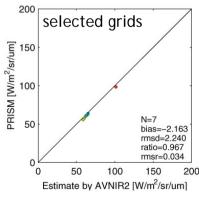
Absolute radiometric calibration of PRISM was done by cross Cal with calibrated AVNIR-2.

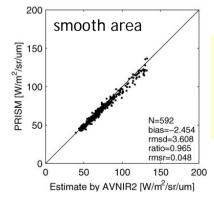
left image:

Sample area and points

Geometric condition:


SA7: around Nadir


SOZ: 47deg REA: 114deg


Shift

PRISM L:-8km P:+1km AVNIR2 L:-7km P:0km

psm0=0.086*avn(1)+0.378*avn(2)+0.409*avn(3)+0.127*avn(4) psm=(0.979+0.040*psm0) *psm0 (Alt=3000m)

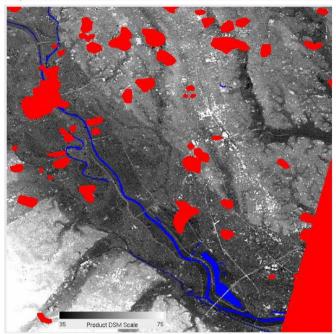
- **Both values are agree** well
- √ Time dependence have to monitor in the future.

Radiometric Cal - Summary

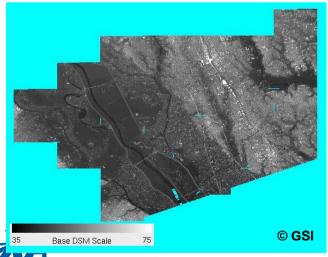
Results of Radiometric accuracy evaluation (as of Oct. 23, 2006)

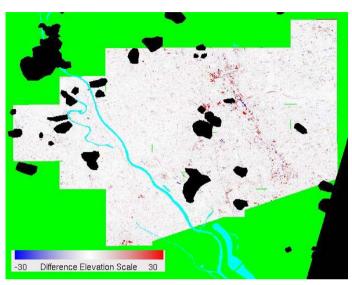
- ✓ Absolute accuracy: AVNIR-2
 - □ Band 1-3 less than 6.2 % (RMSE)
 - □ Band 4 less than 15.8% (RMSE) > Cross cal with high resolution sensors

PRISM is 6.2% (similar with AVNIR-2)


- → Time trend have to monitor in the future (sensitivity degradation, characteristic change etc.)
- ✓ Relative accuracy: AVNIR-2 less than 1DN (0.4 %)

PRISM 3DN (1.2%) > Post processing should be added





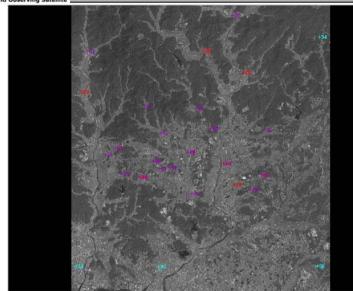
S Validation #1 - PRISM/DSM Test Generation

Example of generated DSM by PRISM Triplet (OB1).

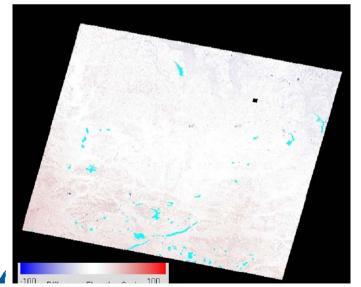
Height differences between Lidar/DSM - PRISM/DSM.

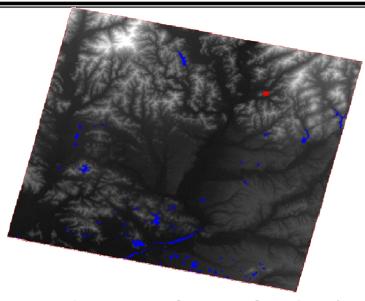
Test generation of PRISM/DSM using stereo pair image acquired in Saitama Pref. Japan on April 30 ("Cal/Val Dataset").

- ✓ Corrected CCD alignment images
- ✓ Compared the results with Lidar/DSM by GSI
- ✓ Averaged error= **0.94m**, STDEV= **4.85m**



- Large errors were identified due to buildings
- ✓ Filtering and tuning of matching processing


EORC Earth Observation Research Center


S Validation #2 - PRSIM/DSM Test Generation

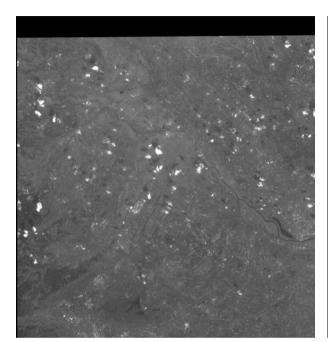
PRISM Triplet (OB1) over Hyogo Pref. on Apr. 28, 2006.

Height differences between GSI 50m/DEM - PRISM/DSM.

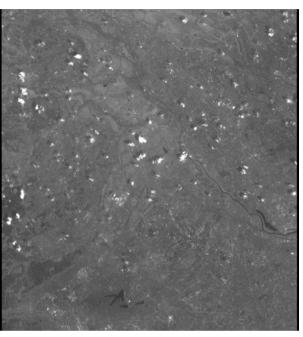
Example of generated DSM by PRISM Triplet (OB1).

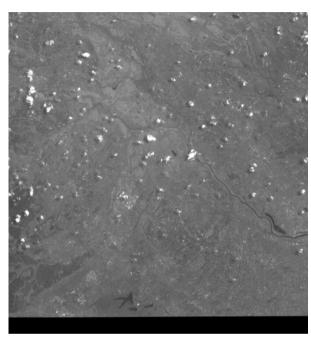
Test generation of PRISM/DSM using 17 pair images acquired in the world.

- ✓ External orientation with GCPs
- ✓ Compared the results with GSI 50m-mesh DEM (Japan), SRTM-DEM, and existing DEM.
- ✓ Averaged error= 13.6m, averaged STDEV= <u>30.9m</u>



- ✓ Reference DEM is coarse (1:25,000 or more)
- ✓ Differences between DEM DSM
- ✓ Accuracies of some GCPs were not satisfied




S Validation #3 – PRISM Ortho-rectified Image

Ortho-rectified image of Forward.

Ortho-rectified image of Nadir-image. ALPSMN014002875, "Saitama Dataset".

Ortho-rectified image of Backward.

ALPSM01400		Location error (pixel)*									
	Number of GCP	Aver	age	STE	EV	RMSE					
		Pixel	Line	Pixel	Line	Pixel	Line				
Forward	211	-0.377	-0.243	0.509	0.426	0.634	0.490				
Nadir	214	-0.423	-0.267	0.519	0.467	0.670	0.538				
Backward	210	-0.220	-0.109	0.400	0.310	0.462	0.333				

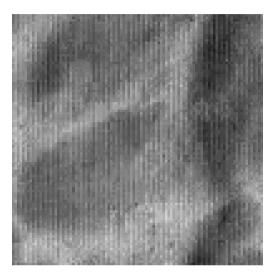
^{*} Location errors at GCP ware calculated "measured vale" – "calculated value" STDEV is standard deviation of error

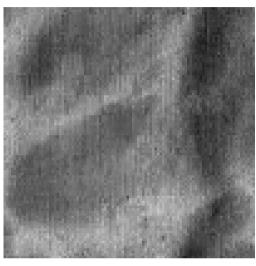
S Validation #4 – AVNIR-2 Ortho-rectified Image

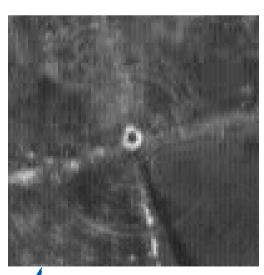
Sakura-jima, Kagoshima, Japan of AVNIR-2 L1B1 image. 34.3 deg. pointing, ALAV2A030782940.

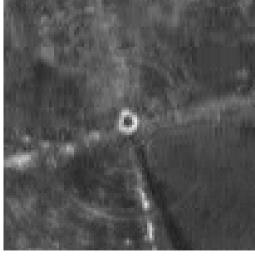
Location error (pixel)* Number of **RMSE** Average **STDEV GCP** Pixel Line Pixel Line Pixel Line 43 0.153 0.144 0.557 0.417 0.578 0.441

Ortho-rectified image of AVNIR-2. GSI 50m-DEM was used


* Location errors at GCP ware calculated "measured vale" – "calculated value" STDEV is standard deviation of error







SFuture Work #1 – PRISM Relative Accuracy

- ✓ Calculation of DN difference between odd/ even detectors
- ✓ Add DN difference
- ✓ As results, it looks reduction of block noise due to JPEG compression
 - → Processing each 8 lines (unit of JPEG compression)

Example of applying odd/even difference filter

100x100 (DN scale: 120-160)

IMG-05-ALPSMB013623255-O1B1_B

Sahara, left: before correction; right: after correction

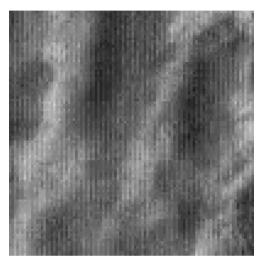
Before: E-O= -2.37 After: E-O= $\frac{-0.37}{}$

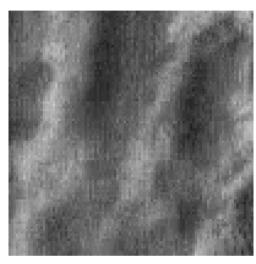
Example of applying odd/even difference filter

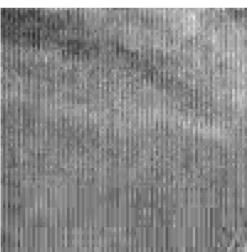
100x100 (DN scale: 50-180)

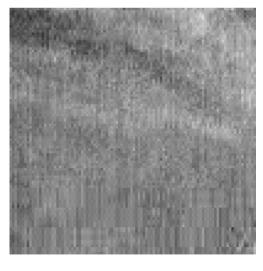
IMG-04-ALPSMB029422885-O1B1_B

Ely, left: before correction; right: after correction


Before: E-O= -2.47 After: E-O= -0.48




EUKU Earth Observation Research Center



SFuture Work #1 – PRISM Relative Accuracy

- Power spectral are calculated for each line by FFT
- ✓ Input 0 at 1/2 sample
- ✓ Calculate Inverse FFT (iFFT)
- ✓ It looks reduction of JPEG block noises

Example of applying iFFT filter

100x100 (DN scale : 120-160)

IMG-05-ALPSMB013623255-O1B1_B

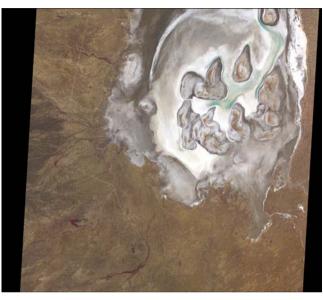
Sahara, left: before correction; right: after correction

Example of applying iFFT filter

100x100 (DN scale: 100-140)

IMG-04-ALPSMB029422885-O1B1_B

Ely, left: before correction; right: after correction



Future Work #2 - Cross Cal with HRS

- Cross calibration with highspatial resolution satellite i.e., ASTER, SPOT-5 over homogeneous targets
 - ✓ Pixel-scale evaluation: Frequency is decrease
 - ✓ SPOT-5 HRG-X (4 scenes) and ASTER (12 scenes) are planed to observe simultaneously.
 - ✓ Angle differences within 5 degree, and time differences within one day.
 - Comparison of surface reflectance at TOA over stable surfaces

AVNIR-2 image over Lake Frome, Australia (June 28, 2006).

ASTER image over Lake Frome, Australia (June 28, 2006).

- > Many test sites are already inputted to observation requests
- ✓ White Sands, RR Valley, Ivanpah Playa, Lunar Lake, Lake Frome *etc*.
- ✓ Arizaro (Argentina) : AVIRIS, EO-1/Hyperion test site.
- Orbit/observation timing simulations : both AVNIR-2/PRISM and other sensors
- Submitting observation requests

