

ALOS Kyoto & Carbon Initiative 7th Advisory Panel/Science Team meeting

JAXA EORC, Tsukuba, Japan Jan 16-19, 2007

KC#7 Agenda

Tuesday, Jan.16

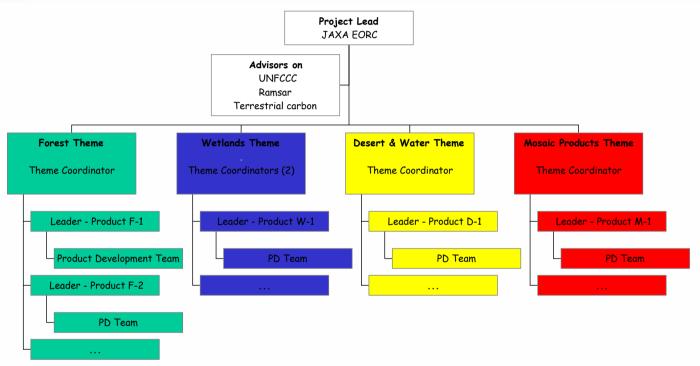
ALOS and PALSAR status
Data products and formats

Wednesday, Jan. 17 (a.m.)

K&C www interfaces Project up-date presentations from Science Team

Thursday, Jan. 18

Project up-date presentations from Science Team External presentations
Theme Work Sessions (Forest, Wetlands, Mosaic)


Friday, Jan. 19

Theme Work Sessions
Summary & Action Items
Meeting wrap-up

Project organisation

Theme Coordinators:

- Forest Theme Richard Lucas
- Wetlands Theme Laura Hess & John Lowry
- Desert & Water Philippe Paillou
- Mosaic Theme Bruce Chapman

Science Team:

20 organisations under contract with JAXA

K&C contract status

Finalised

- Applied Geosolutions (Bill Salas)
- BOS Foundation (Dirk Hoekman)
- U. Victoria (Kevin Telmer)
- U. Victoria (Maycira Costa)
- Wetlands International (Doug Taylor/John Lowry)
- SLU (Johan Fransson/Hakan Olsson)
- U. Bordeaux-1 (Philippe Paillou)
- INPE (Raimundo Filho)
- DLR (Alberto Moreira)
- CESBIO (Thuy Le Toan)
- UCSB (Laura Hess)
- U. New South Wales (Tony Milne)
- JPL (Bruce Chapman, Kyle McDonald)
- U. Massachusetts (Paul Siqueira)
- U. Wales Aberystwyth (Richard Lucas)
- Friedrich-Schiller University Jena (Chris Schmullius)
- Sarmap (Francesco Holecz)
- JRC (Rosenqvist/De Grandi)

Pending

· U. Chiba (R. Tateishi)

K&C phases of implementation

0 - Implementation of the PALSAR observation strategy

PALSAR acquisitions in support to the K&C Initiative began in November, immediately following the completion of the commissioning and calibration/validation phases of ALOS, PALSAR data are processed by JAXA EORC and delivered to the K&C Product Leaders within one cycle after acquisition.

1 - Local-scale methodology development.

This work is carried out by the Product Leaders and their Product Development (PD) teams, typically using a small number of PALSAR scenes over study site(s) that are representative for the biome(s) of interest, with ample in situ data available for verification.

2 - Regional-scale prototype demonstration.

This step constitutes the essence of the K&C Initiative during the first 3 years, and which covered within this science plan. Applying the methods and algorithms developed in the previous step, "derived products" over extensive regions – described in the theme descriptions that follow below – are generated by the PD teams. All products are made available to the public and to specific target users.

3 - Review

3 years after the launch of ALOS, JAXA performs a review of all K&C projects and the products developed, with respect to scientific significance, accuracy levels achieved, actual relevance to CCC etc., in relation to the amounts of PALSA data provided.

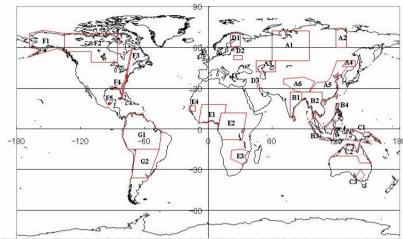
4 - Global-scale extrapolation.

Projects which are deemed successful and with a potential for application over different or larger regions are selected by JAXA for extension for another 2-year period.

PALSAR Ascending observation plan (Jan.'07)

Default off-nadir angle changed from 41.5° to

	3°						2007								2008							2009		
Month		- 11	12 1		3 4	5	6 7	_		10 11	12 1		3 4		6 7	_	_	10 11	12 1		3 4	5	6 7	7 8
Satellite cycle	t	7	8	9	10	н	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	2
Sherii NW	Al																							
beriaN-central	A2																							4
Sherii NE	A3																							_
Kanchaka	A4																							_
Sherii SW	A5			_																				-
iberii S-central	A6			_																_				+
Sheria SE	A7			_		_				_								_			_	_		+
Copin Sco	A8			_					_	_							_	_		_		_		+
Central Asia Himalayas	A9 A10					_				_												_		+
China East	All					_																		+
Korea	A12								_											_		_		+
Akutim W	AI3																							
Japan	A20-35																							
India	Bl																							
ninsulur SE-Asia	B2																							
nsubr SE-Asia	B3																							
PNG	Cl																							
Australia N&E	C2																							
Australia arid	C3																							
Australia S&E	C4																							4
New Zealand	CS																							4
Greenland	DI																							\bot
leelind	D2					_																_		+
Europe N	D3			_						_								_				_		+
Europe SW	D4									_							_	_				_		+
Europe central	D5									_										_				-
Europe E Middle Enst	D6 D7			_	_	-				_										_	_	_		+
Ambii	D8					_																		
Morocco	El					-				_												_		_
Sultara W	E2																							
Salam E	E3																							
WAfrica	E4																							
C.Africa W	E5																							
CAfricaE	E6																							
Somalia	E7																							
Botovaria	E8																							
SAfrica	E9																							
Midagocar	E10					—				_					_						_	_		-
QEIslands	Fl							_																+
Altoka	F2																							
Canada NW	F3																							
Canada SW	F4 F5				-	-				-	-				-			-	-		-	-		-
Canada SE USW	F6					\vdash																-		
USE	F7																							-
lentral America	F8																							
entrat/America urbbean blands	P9																							
Akufun E	F10																							
Amazon Basin	GI																							
Brazilfast	G2																							
America Mid	G3			_	_				_		_						_	_						-



PALSAR ScanSAR Descending observation plan (Nov.'07)

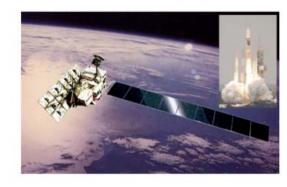
ScanSAR observations of 27 major river basins and wetlands.

Every 46-day satellite cycle during at least one annual cycle.

-														4000	(2890)	2000		13(0)						<u>~</u>	<u> </u>
Year							2007								2008								2009		
Month		11	12	1 2	3	4 5	6	7 8	9 1	10 11	12	1 2	3	4 5	6	7 8	9 1	10 11	12	1 2	3	4 5	6	7 8	9 1
Satellite cycle	è	7	- 8	9	10	- 11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
West Siberia	Scan_A1																								\Box
Lena Delta	Scan_A2																								
Volga Delta	Scan_A3																								
Amur	Scan_A4																								
East China paddy	Scan_A5																								
Tibet	Scan_A6																								
India paddy	Scan_B1																								
Mainland SE-Asia	Scan_B2																								
Insular SE-Asia	Scan_B3																								
Luzon	Scan_B4																								
New Guinea	Scan_C1																								
North Australia	Scan_C2																								
Murray-Durling	Scan_C3																								
Finland	Scan_D1																								
Pripet-Biebtza	Scan_D2																								
Tigris marshes	Scan_D3																								
Niber Basin	Scan_E1																								
Congo Basin	Scan_E2																								
Okavango-Mozambique	Scan_E3																								
Senegal wetlands	Scan_E4																								
ASF mask	Scan_F1																								
Canada W	Scan_F2																								
Quebec-Everglades	Scan_F3																								
SE USA	Scan_F4																								
Mexico	Scan_F5																								
Amazon Basin	Scan_G1																								
Pantanal	Scan G2										////////														

Input to be provided during KC#7

Verification of Science Plan project descriptions

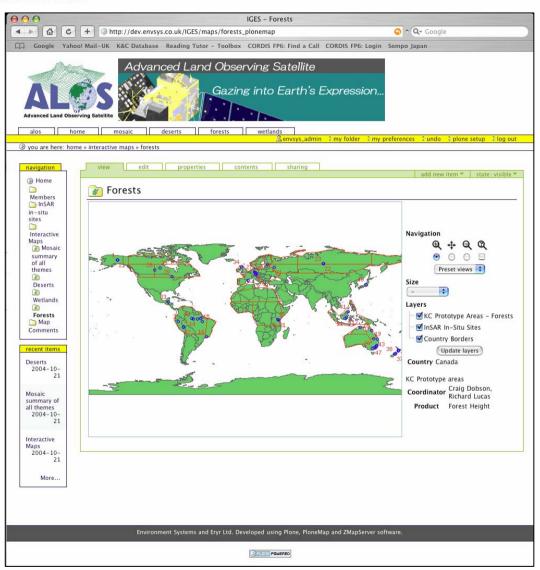

Draft Science Plan v.1 released July, 2005.

Post-launch up-date v.2 February, 2006.

Feed-back from KC#7 (Theme Work sessions):

- Verification of Science
 Team project descriptions
- are they still up-to date?

The ALOS Kyoto & Carbon Initiative
Science Plan (v.2.0)



February, 2006

Input to the K&C Data Base

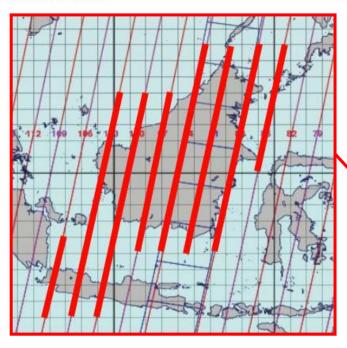
- A resource for the K&C Science Team
- To contain updated information about the
 20 K&C projects
- Full access to all K&C Science Team members.
- Limited access for general users.
- Refined input to be provided during meeting.

Up-date $(41.5^{\circ} -> 34.3^{\circ})$ of processing requests

Input requirements for EORC resource allocation for data processing and dissemination

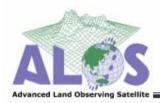
- → Timing, location & amounts of all K&C data requested
- > Processing levels and means of data distribution

B 4 4 1 4				· · · · · · · · · · · · · · · · · · ·	=0							01	II KOX		renc	e mi	eetir	1g, r	eb.2	.0 -	wa	.5, 2	003	,							++	+	+			-
Product Leader:	Ernst Ramberg	Ascend	ing mode ((HH or HH+	HV 41.5°)			Щ	\perp	\perp	\perp			ш	ш	ш	ш	ш	ш	ш	ш		ш	ш	ш		ш	ш	_	ш	ш	ш	Ш	ш	Ш.	Ш.
Affiliation	Hotaheiti University	Total	Total	Average	Data																								ш							
Country	Fiji	#scenes	#passes	pass [km]	[Gbyte]				Sum	mar	y of	K&	C P	ALS							d 1	ron	ıJ	AX	(A I	EO	RC	by	ш							
K&C Theme	Forest	2,679	261	719	69										Е	-rn:	st R	am	ber	g									н		Ш	Ш	Ш	Ш	Ш	Ш
		De	scending	mode Scan	ISAR										П	П		П	П			П	П				П		4	H	Н	Н	Н	+	+	Н
		Total	Total	Average	Data									Ш				\top					\Box		Ш	77	\top			+	Ш	П	П	\top		П
		#scenes	#passes	pass [km]	[Gbyte]				Fill	in the	real	ester	linf	orma	tion	in t	he e	mnts	/hox	(05		+	†		Ш		††	\Box		_	Ш	Ш	7	+	+	т
		1,051	136	2706	231				iii.		loqu	05,00				Ш						+	$^{+}$	Н	Н	+	#	+++		+-	Н	Н	7	+	+	Н
Ascending mode		1,001	130	4700	201				H							+		+	-			+	\vdash				+		_	++-	++	+	_	+	+	H
HH 41.5° & HH+HV 41.5°							+	+	+++	+++			+	++	+	+	H	+	+	+		+	+		\vdash	+	+	+	+	++	Н	Н	+	+	+	H
111 1210 0 1111111 1210											+++	_	_	Н	_	+	Н	Н	_	т		++	Н			_	++	+	+	+	$\overline{}$	\vdash	$\overline{}$	+	+	—
Prototype area 1:	Borneo, west Java		Ascendin	ig subtotals 1		14					Satellite cycles durin						ng wh	ich c	lata c	ore r	eque	sted (mark	c beli	ow wi	ith ":	l")									
PALSAR polygon(s)	B3	#scenes/	/coverage	#pass/cov	Mbyte/cov.	Year					2008	ı									200	r									50	800				
Proc.level *: SLP / GRP		3	06	27	600	Month	12	1 2	3	4 5	á	7 8	9	10	11	12	1 2	3	4	5	á	7	8 '	9 1	0 1:	1 12	1	2	3	4 7	5 6	j 7	7 8	9	10	11
ORP-ŒO / ORP-MER / MOS	SLP	#cov	#scenes	#passes	Tot. Gbyte	Cycle#	3	4			7	8	9		10	ш	12				l5	Le	,	17	L8	_	9	20	21	22		23	24	2	5	26
Media (FTP or S-DLT)	FTP	8	2,451	216	67.2	Req = L					l	l					ı				ι	l			L			L		丄		L	L			
										+++									-	Н	Ш		Н		H		-				H	H		+	-	
Prototype area 2:	Iceland		Ascendin	a subtotals 2		5							Sate	lite c	vcles	duri	na wh	ich (data (are r	eque	sted	mar	k bel	ow w	ith "	ነግ							Ħ		
PALSAR polygon(s)	D2	#scenes/	/coverage			Year	Т				2008					Т					200	,					Ť				20	008				
Proc. level *: SLP / GRP			76	15	149	Month	12	1 2	3	4 5	6	7 8	9	10	11	12	1 2	3	4	5	á	7	8 '	9 1	0 1:	1 12	1	2	3	4 3	5 6	6 7	/ B	9	10	11
ORP-ŒO / ORP-MER / MOS	SLP	#COY	#scenes	#passes	Tot. Gbyte	Cycle#	3	4			7	8	9		lO	ш	15				l5	Le	5	17	l8	_	9	50	21	55	2 6	23	24	5	5	26
Media (FTP or S-DLT)	FTP	3	229	45	2.2	Req = L						L					L														\perp		L	\perp	\Box	
																												Ш	=	\blacksquare	П	\square	П	\blacksquare	\blacksquare	F
Prototype area 3:			Ascendin	g subtotals 3		0							Sate	lite c	ycles	duri	ng wh	rich o	lata (are r	eque	sted	marl	k bel	ow w	ith "	l")		\dashv	H	H	H	H		+	
PALSAR polygon(s)		#scenes/	/coverage	#pass/cov	Mbyte/cov.	Year	TI				2008					T					200	,					T				20	800				
Proc. level *: SLP / GRP			0	0	0	Alombi	12	1 2	3	4 5	6	7 8	9	10	11	12	1 2	3	4	5	á	7	8 '	9 1	0 1:	1 12	1	5	3	4 3	5 6	6 7	/ 8	9	10	11
ORP-ŒO / ORP-MER / MOS		#cov	#scenes	#passes	Tot. Gbyte	Cycle#	3	4			7	8	9		lO.	ш	12				l5	L	5	17	l8	ı	9	50	21	55		23	24	5	5	26
11 11 0000 0 0100		0	0	0	0.0	Rec = L							T									T				T		\neg		T	Т	\neg	$\overline{}$	Т	Т	
Media (FTP or S-DLT)			. ·	, ·	1 0.0																															



Comments during discussion sessions!

Provision of detailed processing requests



Refinement of the processing requests provided at KC#5 (Nov. 2003)

RSP# 85, 88, 91, 94, 97, 100, 103, 106

- · Cyle #
- · RSP#
- Latitude boundaries of data segment to be processed.

											5	canS/	4R																	
Product Leader:	Ernst	Rambe	ra																											
Prototype area:	Borneo	& W	est Ja	να																										
//																														
RSP#	88	85	82	79	76	73	70	67	64	61	58	55	52	49	46	43	40	37	34	31	28	25	22	19	16	13	10	7	4	Г
N-Lat. [XXx deg.]	8.0	8.0	7																									\neg	ı —	Г
S-Lati. [YY.yideg.]	-5.0	0.0																												Г
Segment length [deg.]	13.0	8.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
#scenes (/band)	4.1	2.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
																														Г
																								X						
RSP#	178	175	172	169	166	163	160	157	154	151	148	145	142	139	136	133	130	127	124	121	118	115	112	102	106	103	100	97	94	Г
N-Lat. [XXx deg.]																									-4.0	5.0	5.0	5.0	8.0	1
S-Lati. [YY.yideg.]																									-9.0	-9.0	-9.0	-5.0	-5.0	-
Segment length [deg.]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.8	5.0	14.0	14.0	10.0	13.0	1
#scenes (/band)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.6	4.4	4.4	3.2	41	╆~

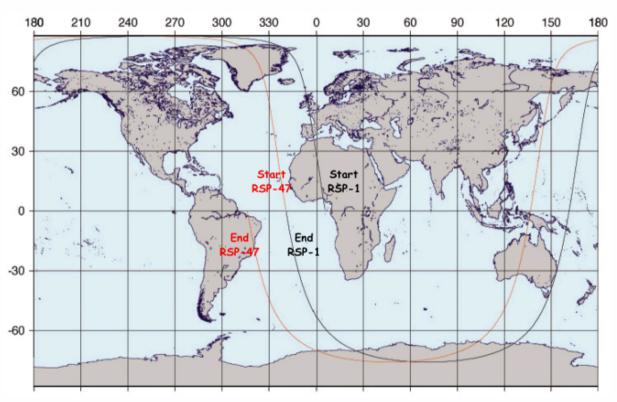
Set-up of a FTP transfer test

The majority of all PALSAR data will be processed and delivered by JAXA EORC

50 m Fine Beam path images 70 m ScanSAR path images RSP-based requests

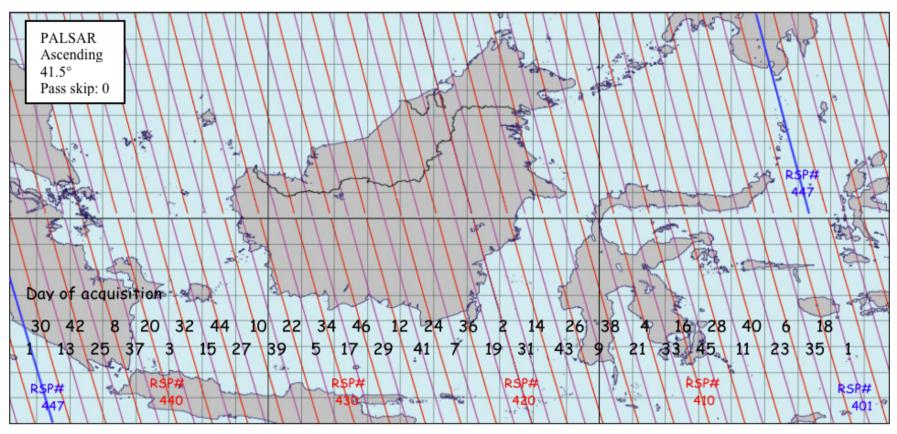
FTP transfer dummy test to be undertaken during March, 2005, by RESTEC and K&C scientists.

Data for the InSAR and Pol-InSAR groups (DLR, U-Mass, Sarmap), which will be processed and delivered by JAXA EOC in Hatoyama

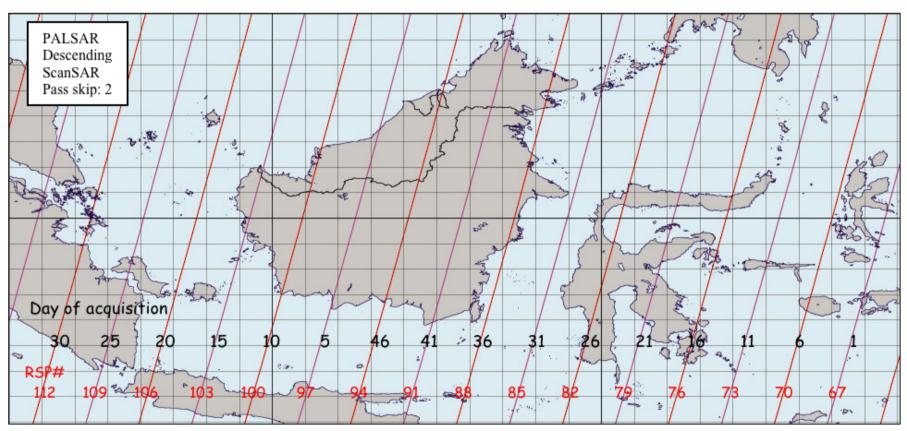

Standard products, Single-Look Complex Requests via the EOC www order system Orders based on traditional GRS grid Maximum 100 scenes/year

RSP - the orbit Reference System for Planning

RSP - an orbit-based system based on the actual footprint of the observation swath will to be used within the K&C Initiative for pass identification


671 ALOS orbits within a 46-day cycle.

• A RSP pass is defined to start at the Equator in ascending mode, resulting in a "jump" in the numbering (n+46) with every ascending equator crosssing (CAUTION!)


ALOS observations - temporal characteristics Fine Beam mode (HH/HH+HV @ 41.5°)

- RSP sequential numbers from 1-671, increasing westwards (i.e. not chronological)
- 17 and 29 days' time difference between neighbouring passes in Fine Beam mode (17-17-29-17-17-29 -...)
- Above N 60°, every 2nd pass acquired. Pass time difference: 12 and 34 days.

ALOS observations - temporal characteristics ScanSAR

- In ScanSAR mode (350 km swath), acquisitions limited to one in every 3 passes;

