

The NASA-ISRO SAR Mission: An International Partnership for Science and Society

Paul A Rosen Jet Propulsion Laboratory California Institute of Technology

Raj Kumar Space Applications Centre, ISRO

Paul Siqueira University of Massachusetts, Amherst

> Feb 17, 2016 Tokyo, Japan

For a minimum of 3 years:

- a) Measure ground movements in areas of expected solid earth deformation every 12 days from two directions to understand the processes causing earthquakes, volcanic eruptions, landslides, aquifer and reservoir variations, etc.
- b) Measure flow of Earth's ice sheets and glaciers every 12 days from two directions to understand their interaction with global climate
- c) Measure sea ice movements in both the Arctic and Antarctic to understand their interaction with global climate
- d) Measure the dynamics of global woody aboveground biomass
- e) Measure the dynamics of major wetlands and agricultural systems
- *f)* In the event of a major natural or anthropogenic disaster anywhere in the world, task observations and downlinks rapidly on a best efforts basis

- Biomass Estimation
- Disturbance Monitoring
- Inundation Extent
- Agricultural Area Mapping

- Biomass Estimation
- Disturbance Monitoring
- Inundation Extent
- Agricultural Area Mapping

Aboveground woody vegetation biomass annually at the hectare scale (1 ha) to an RMS accuracy of 20 Mg/ha for 80% of areas of biomass less than 100 Mg/ha.

- Biomass Estimation
- Disturbance Monitoring
- Inundation Extent
- Agricultural Area Mapping

NISAR will detect, annually, changes in Vegetation Canopy Cover (VCF) of 0.5 or greater at the hectare scale (1 ha) with a classification accuracy of 80%

- Biomass Estimation
- Disturbance Monitoring
- Inundation Extent
- Agricultural Area Mapping

Inundation extent within inland and coastal wetlands areas at a resolution of 1 hectare every 12 days

- Biomass Estimation
- Disturbance Monitoring
- Inundation Extent
- Agricultural Area Mapping

Classification of active agriculture area at 1 ha resolution of staple crops will be reported every three months.

- Biomass Estimation
- Disturbance Monitoring
- Inundation Extent
- Agricultural Area Mapping

Classification of active agriculture area at 1 ha resolution of staple crops will be reported every three months.

 * Science drivers are different than the many uses of NISAR for Ecosystems Applications

NISAR Science Observation Overview

NISAR Characteristic:	Would Enable:
L-band (24 cm wavelength)	Low temporal decorrelation and foliage penetration
S-band (12 cm wavelength)	Sensitivity to light vegetation
SweepSAR technique with Imaging Swath > 240 km	Global data collection
Polarimetry (Single/Dual/Quad)	Surface characterization and biomass estimation
12-day exact repeat	Rapid Sampling
3 – 10 meters mode- dependent SAR resolution	Small-scale observations
3 years science operations (5 years consumables)	Time-series analysis
Pointing control < 273 arcseconds	Deformation interferometry
Orbit control < 500 meters	Deformation interferometry
> 30% observation duty cycle	Complete land/ice coverage
Left/Right pointing capability	Polar coverage, north and south

NISAR Would Uniquely Capture the Earth in Motion

NISAR* Science Definition Team has adopted an observation strategy to accommodate three major science disciplines with nominally different needs:

- Minimize radar mode contention
- •Apply fixed observation plan over each 12-day repeat cycle**
- •Cull excessive overlap by thinning observations over the cycle
- •Allow for urgent request

 Each colored region represents a single radar mode set tailored to that science target

Repeat Coverage Every 12 days (Revisit every 6 days)

NISAR Swath Coverage 240 km SweepSAR

- NISAR approach would acquire sufficient swath to cover equatorial ground track extent
 - Global access at desired time sampling and imaging characteristics

orbit

- Science targets are observed in specific fixed modes, with culling at high latitudes to reduce overlapped data takes
- "Background Land" satisfies deformation and biomass objectives

Observation Strategy	L-band		S-band		Culling Approach		
Science Target	Mode⁺	Resolution	Mode	Resol.	Sampling	Desc Asc	
Background Land	DP НН/НV 斗	12 m x 8 m			cull by lat		
Land Ice	ѕр нн 🗦	3 m x 8 m			cull by lat		
Sea Ice Dynamics	SP VV	48 m x 8 m			s = 1 p		
Urban Areas	t_⇒	6 m x 8 m			s = 1 p		
US Agriculture	QP HH/HV ∰ VV/VH →				s = 1 p		
Himalayas	Ĺ		CP RH/RV		s = 1 p		
India Agriculture	t <u>t</u> ∔				s = 1 p		
India Coastal Ocean			QQP HH/VV $\int_{c_1} f_{c_2}$		s = 1 p		
Sea Ice Types	DP VV/VH				s = 3 p		
⁺ Main-band mode; split band is narrower bandwidth and can be like (DP) or orthogonal (QQP) polarizations							

NISAR Flight System Summary – 1

Spacecraft bus (ISRO)

 ISRO I3K heritage bus with several modifications (structure, power switches and reaction wheels)

L-band SAR (JPL)

- L-band SAR Electronics
- L-band Feed RF Aperture
- Radar Instrument Structure (RIS)
- Radar Antenna Boom (RAB)
- Radar Antenna Reflector (RAR)
- S-band SAR (ISRO)
 - S-band SAR Electronics
 - S-band Feed RF Aperture

ISRO

JPL

NISAR Flight System Summary – 2

- Engineering Payload (JPL)
 - Payload Communication Subsystem (PCS)
 - Ka-band high rate transmitter
 - GPS Payload (GPSP)
 - GPS receiver

- Solid State Recorder (SSR)
- Payload Data Subsystem (PDS)
- Power Distribution Unit (PDU)
- Launch Vehicle (ISRO)
 - Geosynchronous Satellite Launch Vehicle (GSLV) Mark-II

NISAR Stowed Configuration

NISAR Instrument Housing

AfriSAR CAL/VAL Campaign in Tropical Forests

- NASA deploying UAVSAR & LVIS in February
 - **ONERA** deployed Sethi on Falcon-20
 - DLR currently deployed in Gabon (SAR and Tandem-X acquisitions

AfriSAR: Collaboration with ESA on Cal/Val for Geodetic Imaging Missions

- Both ESA and NASA have upcoming missions with a focus on Ecosystem dynamics and above-ground biomass:
 - NISAR (NASA-ISRO Synthetic Aperture Radar) is an L-band S-band spaceborne SAR (JPL-launch 2020)
 - GEDI (NASA Global Ecosystem Dynamics Initiative) is a spaceborne Lidar on the International Space Station (UMD, GSFC- launch 2019)
 - BIOMASS (ESA) is a P-band spaceborne SAR (CNES-launch 2020)

- Mission Concept Review completed successfully in Oct 2013
- Phase A started May 2014 (Key Decision Point A in Mar 2014)
- Implementing Arrangement between NASA and ISRO signed Sep 2014
- System Requirements Review/Mission Definition Review completed successfully in Dec 2014
- Phase B started Mar 2015 (Key Decision Point B in Feb 2015)
- ASF Selected as Data Node: January 2016
- Science peer review completed April 2016
- BIOMASS/ICESAT-2/GEDI/NISAR Joint Cal/Val Workshop in May 2016
- NASA PDR in June 2016
- NASA Applications workshop held annually (October)
- ISRO Applications workshop held annually (November)
- Launch late 2020