Measurement for L-band SAR signal extinction in a forest canopy

Manabu Watanabe, Takeshi Motohka, Rajesh Bahadur Thapa, and Masanobu Shimada

JAXA/EORC

Content

- 1. Background
- 2. Measurement for L-band SAR signal extinction with CR
- 3. Tree height estimation by PALSAR/InSAR
- 4. Summary & future

1. Background

Motivation

- ➤ How much L-band SAR penetrate in a forest canopy?
- \triangleright Extinction factor (σ) is important for tree height estimaton with InSAR Water Cloud model (σ^0 -biomass relation)
- \triangleright σ estimation example from InSAR (L-band) & LiDAR data (Indirect method)* Average: 0.18-0.21 dB/m, Max ~0.7 dB/m (@Finland)
- ightarrow "Direct measurement of σ ", "Applying tree height measurement with InSAR"

Method

- \triangleright Deploy CR under trees, measure σ .
- \triangleright Estimate tree height with measured σ and InSAR technique.

* J. Praks, et al., IEEE TGRS, vol. 50, No. 10, pp 3831-3843, 2012

1. 2. Measurement for L-band SAR signal extinction with CR

~ Data ~

@ Tomakomai National forest

Pi-SAR-L2	<u>Data 1</u>	<u>Data 2</u>				
Obs. date	Oct. 10, 2013	Oct. 11, 2013				
Flight direction	South→North(PALSAR-D)	East→West				
Obs. ID	L203001, L203003	L203101, L203102, L203103, L203105, L203106				

Forest data	Broad leaf	Aka-ezomatsu
Average tree height	9.2 m	9.5m
Biomass	62.9 tons/ha	110.5 tons/ha
Deployed CR	<u>2.5 m</u>	<u>3 m</u>

Observed CRs

(L203003)

CR under trees are observed CR managed to be observed with 110.5 tons/ha forest

Measured extinction factor (σ)

ID	Broad leaf	Aka-ezomatsu			
Biomass	62.9 tons/ha	110.5 tons/ha			
<u>o</u>	0.30 dB/m (S→N, HH) 0.42 dB/m (S→N, VV) 0.43 dB/m (E→W, HH) 0.42 dB/m (E→W, VV) (Small azimuth dependency)	0.75dB/m (S→N, HH) 0.65dB/m (S→N, VV) 1.05 dB/m (E→W, HH) 1.07 dB/m (E→W, VV) (Large azimuth dependency)			
Photos					

Extinction factor: 0.3~1.07

Consistent with the result estimated from LiDAR & InSAR data.

Azimuth dependency is observed for regularly planted Aka-ezomatsu site.

3. Tree height estimation by PALSAR/InSAR

Coherence (Intensity)

$$|\gamma|_{\text{Obs.}} = |\gamma|_{\text{processor}} |\gamma|_{\text{azimuth}} |\gamma|_{\text{noise}} |\gamma|_{\text{spatial}} |\gamma|_{\text{volume}} |\gamma|_{\text{temporal}}$$

Cause of de-correlation

 $|\gamma|_{\text{spatial}}$: Non-parallel orbits of two repeat pass. ≤ 1 Well represented by a theory $|\gamma|_{\text{volume}}$: Volume scattering component ≤ 1 Some theories suggested, based on a forest structure $|\gamma|_{\text{temporal}}$: Status change of scatterers between two flights ≤ 1 Difficult to describe a theory.

One of a theory for Volume de-correlation

~ Exponential extinction in a canopy ~

$$\gamma_{volume}(\vec{w}) = \exp^{i\varphi_0} \frac{\int_0^{h_v} \exp^{\frac{2\sigma(\vec{w})z}{\cos\theta}} \exp^{ik_z z'} dz}{\int_0^{h_v} \exp^{\frac{2\sigma(\vec{w})z}{\cos\theta}} dz}$$

$$= \exp^{i\varphi_0} \frac{p_1(\vec{w}) (\exp^{p_2(\vec{w})h_v} - 1)}{p_2(\vec{w}) (\exp^{p_1(\vec{w})h_v} - 1)} \qquad p_1 = \frac{2\sigma(\vec{w})}{\cos\theta}$$

$$p_2 = \frac{2\sigma(\vec{w})}{\cos\theta} + ik_z$$

 σ : Extinction factor (dB/m)

 θ : Incident angle

h_v: Volume thickness (Tree height)

 λ : Wave length

 \vec{w} : Scattering vector

R: Range distance

 B_{\perp} : Orbit interval

$$p_{1} = \frac{2\sigma(\vec{w})}{\cos\theta}$$

$$p_{2} = \frac{2\sigma(\vec{w})}{\cos\theta} + ik_{z}$$

$$k_{z} = \frac{4\pi B_{\perp}}{2R\sin\theta}$$

hv is estimated from γ_{volume} and σ

PALSAR data

- 4 pairs with highest coherence
- Exclude winter time
- Surface phase is corrected in the vacant area data.

	FBD 34.3°	(HH,HV)	PLR 21.5° (H	H,HV,VH,VV)		
Obs. direction	Ascer	nding	Descending			
Obs. date	8/18-10/3, 2007	7/8-8/23, 2009	5/30-8/30 <i>,</i> 2010	8/30-10/15, 2010		
Obs. interval (day)	46	46	92	46		
Orbit interval (m)	321.9	1137.51	307.9m	385.8		
kz	0.032	0.112	0.053	0.067		
ID	FBD1	FBD2	PLR1	PLR2		

Coherence (Intensity & phase)

Tree ID	Obs.	Polari-		Cohe	rence		1	Tree height	Tree height		Difference
	mode	zation	PALSA			(m (Estima from ph	ated	(%)			
			Int.	Phase	Int.	Phase					
Broad leaf P	FBD1	нн	0.60	5.9°	0.96	10.5°		9.2		5.6	-39.1
	FBD2	нн	0.49	28.2°	0.82	37.3°				7.3	-20.7
	PLR1	нн	0.34	15.9°	0.91	17.2°				8.5	-7.6
		VV	0.33	26.6°	0.91	18.3°	ı			12.5	35.9
	PLR2	нн	0.38	17.9°	0.88	21.5°				7.9	-14.1
		VV	0.41	14.8°	0.88	22.9°				6.4	-30.4
Aka- ezomatsu	FBD1	нн	0.81	14.5°	0.96	13.4°		9.5		10.2	7.4
	FBD2	нн	0.57	79.4°	0.83	47.5°				14.6	53.7
	PLR1	нн	0.53	9.5°	0.91	21.7°				4.8	-49.5
		VV	0.49	12.9°	0.91	21.0°				6.4	-32.6
	PLR2	нн	0.65	18.9°	0.89	27.2°				7.1	-25.3
		VV	0.66	22.3°	0.89	26.3°				8.3	-12.6

Intensity: Difference observed

Phase : Tree height estimation with 7~14 % accuracy for several sites.

Coherence value on complex plane

Site : Broad leaf

Mode : FBD (HH, HV)

Polarization: HH-HH

Intensity

- Tree height
- Extinction factor
- Temporal de-correlation
- Spatial de-correlation

Intensity: Difference observed(→No temporal de-correlation considered)

Phase: Tree height estimation with 7~14 % accuracy for several sites.

(→No temporal de-correlation dependency)

→Implying tree height estimation with coherence phase only.

4. Summary & future

- L-band SAR signal extinction estimation from CR deployed under trees
 - ✓ Extinction factor

```
0.40 dB/m (@ biomass = 62.9 tons/ha, height=9.2m)

0.88 dB/m (@ biomass = 110.5 tons/ha, height=9.5m)
```

Consistent with the result estimated from LiDAR & InSAR data.

Azimuth dependency is observed for regularly planted site.

- ✓ This method is applicable for a forest site with biomass $< \sim 100$ tons/ha
- \blacksquare Coherence (PALSAR obs. vs Theory + measured σ)
 - ✓ Intensity: Difference observed (→No temporal de-correlation considered
 - ✓ Phase : Tree height estimation with 7~14 % accuracy for several sites.

```
( →No temporal de-correlation dependency )
```

- → Implying tree height estimation with coherence phase only
- Future

Possible to estimate σ from SAR data?