Scattering Mechanism Analysis And Deorientation Effect Investigation For Oriented Built-up Areas Using ALOS/PALSAR PolInSAR Data Sets

Si-Wei Chen, Motoyuki Sato

Tohoku University, Japan

chensw@cneas.tohoku.ac.jp
sato@cneas.tohoku.ac.jp
Model-based decomposition receives more attentions recently (2009-)!

...
Recent main advancements

✓ Negative power control
✓ General volume scattering model
✓ Deorientation
✓ Complete information utilization discussion
✓ Adaptive and general decomposition development
✓ PolInSAR coherence utilization
Decomposition + Deorientation

➢ Basic models for covariance matrix

\[
C_{dbl} = f_d \begin{bmatrix} 1 & 0 & \alpha \\ 0 & 0 & 0 \\ \alpha^* & 0 & |\alpha|^2 \end{bmatrix} \quad C_{vol} = f_v \begin{bmatrix} a & e & d \\ e^* & b & f \\ d^* & f^* & c \end{bmatrix} \quad C_{odd} = f_s \begin{bmatrix} 1 & 0 & \beta \\ 0 & 0 & 0 \\ \beta^* & 0 & |\beta|^2 \end{bmatrix}
\]

Double Bounce

Volume Scattering

Odd Bounce

Decomposed volume scattering power

\[
P_v = (a + b + c) f_v = \left(1 + \frac{a + c}{b}\right) C_{22} \quad P_v > 3C_{22}
\]

<table>
<thead>
<tr>
<th>SPAN</th>
<th>(P_v = 3\langle C_{22}\rangle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before Deorientation</td>
<td>19.48</td>
</tr>
<tr>
<td>After Deorientation</td>
<td>19.48</td>
</tr>
</tbody>
</table>

Oriented building

Pauli Image
PolInSAR coherence

- PolInSAR covariance matrix and coherence

\[C_6 = \begin{bmatrix} C_{11} & \Omega_{12} \\ \Omega_{12}^H & C_{22} \end{bmatrix} \]

\[\hat{\gamma}(\omega_1, \omega_2) = \frac{\langle \omega_1^H \Omega_{12} \omega_2 \rangle}{\sqrt{\langle \omega_1^H C_{11} \omega_1 \rangle \langle \omega_2^H C_{22} \omega_2 \rangle}}, \quad 0 \leq \gamma \leq 1 \]

- Optimization

\[
\max_{\omega_1, \omega_2} |\gamma| \\
\text{s.t.: } \|\omega_1\| = \|\omega_2\| = 1
\]

\[\gamma_{opt_1} \geq \gamma_{opt_2} \geq \gamma_{opt_3} \]

PolInSAR coherence:

- Sensitive to diverse terrains
- Close relationship to forest structures

Potentially, the volume scattering can be modeled from it!
ALOS/PALSAR datasets

ALOS AVNIR-2
Optical Image

Ibaraki and Chiba prefecture
2007-12-31

Range

Azimuth

Pauli Image

Spatial baseline: 299m

2007-04-02

2007-05-18
Built-up region I

2.5m resolution pan-sharpened true-color image generated from PRISM and AVNIR-2 data sets

Yamaguchi Decomp
Built-up region I

Flight direction

2.5m resolution pan-sharpened true-color image generated from PRISM and AVNIR-2 data sets

Proposed Decom
Built-up region II

Flight direction

Optical image
Built-up region II

Flight direction

Yamaguchi
Built-up region II

Flight direction

Proposed
Optical images for oriented built-up patches

- Pure buildings
- Similar size
- Different orientations
Built-up region II _ Scattering power contributions

- Double bounce
- Volume scattering
- Odd bounce
Conclusions

- Investigation the scattering mechanisms for built-up patches with different orientation angles using ALOS/PALSAR PolInSAR data sets
 - Decomposition+deorientation works well for small orientation angle case
 - The proposed decomposition works effectively for both small and large orientation angles cases

- PolInSAR mode shows more application potentials even the temporal baseline is 46 days
 - Classification
 - Scattering mechanism understanding
 - Biophysical parameters retrieval
 - … …
ACKNOWLEDGMENT

The authors would like to thank the Japan Aerospace Exploration Agency (JAXA) for providing the data sets from the ALOS satellite, Dr. M. Shimada and M. Ohki for valuable support and cooperation.

Thank you for your attention!